1 resultado para Service governance support toolset
em Massachusetts Institute of Technology
Filtro por publicador
- JISC Information Environment Repository (7)
- Repository Napier (1)
- Abertay Research Collections - Abertay University’s repository (1)
- Aberystwyth University Repository - Reino Unido (7)
- Academic Research Repository at Institute of Developing Economies (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (7)
- Aquatic Commons (10)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (14)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (2)
- Aston University Research Archive (53)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (2)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (15)
- Brock University, Canada (8)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (4)
- Cambridge University Engineering Department Publications Database (9)
- CentAUR: Central Archive University of Reading - UK (29)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (6)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (2)
- Dalarna University College Electronic Archive (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (3)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (3)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (15)
- Digital Peer Publishing (2)
- DigitalCommons - The University of Maine Research (2)
- DigitalCommons@The Texas Medical Center (6)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (2)
- Ecology and Society (2)
- FUNDAJ - Fundação Joaquim Nabuco (5)
- Glasgow Theses Service (2)
- Greenwich Academic Literature Archive - UK (3)
- Helda - Digital Repository of University of Helsinki (14)
- Indian Institute of Science - Bangalore - Índia (5)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico de Viseu (2)
- Instituto Politécnico do Porto, Portugal (7)
- Instituto Superior de Psicologia Aplicada - Lisboa (1)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (2)
- Massachusetts Institute of Technology (1)
- Memoria Académica - FaHCE, UNLP - Argentina (3)
- Memorial University Research Repository (1)
- National Center for Biotechnology Information - NCBI (1)
- Open University Netherlands (2)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- Portal de Revistas Científicas Complutenses - Espanha (3)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (51)
- Queensland University of Technology - ePrints Archive (267)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (7)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (2)
- Repositório Institucional da Universidade de Brasília (1)
- Repositório Institucional da Universidade Federal do Rio Grande - FURG (1)
- Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT) (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (10)
- Research Open Access Repository of the University of East London. (2)
- Royal College of Art Research Repository - Uninet Kingdom (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (3)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (3)
- Scielo España (1)
- The Scholarly Commons | School of Hotel Administration; Cornell University Research (1)
- Universidad de Alicante (4)
- Universidad del Rosario, Colombia (10)
- Universidad Politécnica de Madrid (12)
- Universidade Federal do Pará (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universidade Metodista de São Paulo (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (3)
- Université de Lausanne, Switzerland (1)
- Université de Montréal, Canada (8)
- University of Canberra Research Repository - Australia (2)
- University of Connecticut - USA (2)
- University of Michigan (41)
- University of Queensland eSpace - Australia (18)
- University of Washington (4)
- WestminsterResearch - UK (10)
- Worcester Research and Publications - Worcester Research and Publications - UK (2)
Resumo:
The Support Vector (SV) machine is a novel type of learning machine, based on statistical learning theory, which contains polynomial classifiers, neural networks, and radial basis function (RBF) networks as special cases. In the RBF case, the SV algorithm automatically determines centers, weights and threshold such as to minimize an upper bound on the expected test error. The present study is devoted to an experimental comparison of these machines with a classical approach, where the centers are determined by $k$--means clustering and the weights are found using error backpropagation. We consider three machines, namely a classical RBF machine, an SV machine with Gaussian kernel, and a hybrid system with the centers determined by the SV method and the weights trained by error backpropagation. Our results show that on the US postal service database of handwritten digits, the SV machine achieves the highest test accuracy, followed by the hybrid approach. The SV approach is thus not only theoretically well--founded, but also superior in a practical application.