3 resultados para Serial number

em Massachusetts Institute of Technology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A vernier offset is detected at once among straight lines, and reaction times are almost independent of the number of simultaneously presented stimuli (distractors), indicating parallel processing of vernier offsets. Reaction times for identifying a vernier offset to one side among verniers offset to the opposite side increase with the number of distractors, indicating serial processing. Even deviations below a photoreceptor diameter can be detected at once. The visual system thus attains positional accuracy below the photoreceptor diameter simultaneously at different positions. I conclude that deviation from straightness, or change of orientation, is detected in parallel over the visual field. Discontinuities or gradients in orientation may represent an elementary feature of vision.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Saliency Network proposed by Shashua and Ullman is a well-known approach to the problem of extracting salient curves from images while performing gap completion. This paper analyzes the Saliency Network. The Saliency Network is attractive for several reasons. First, the network generally prefers long and smooth curves over short or wiggly ones. While computing saliencies, the network also fills in gaps with smooth completions and tolerates noise. Finally, the network is locally connected, and its size is proportional to the size of the image. Nevertheless, our analysis reveals certain weaknesses with the method. In particular, we show cases in which the most salient element does not lie on the perceptually most salient curve. Furthermore, in some cases the saliency measure changes its preferences when curves are scaled uniformly. Also, we show that for certain fragmented curves the measure prefers large gaps over a few small gaps of the same total size. In addition, we analyze the time complexity required by the method. We show that the number of steps required for convergence in serial implementations is quadratic in the size of the network, and in parallel implementations is linear in the size of the network. We discuss problems due to coarse sampling of the range of possible orientations. We show that with proper sampling the complexity of the network becomes cubic in the size of the network. Finally, we consider the possibility of using the Saliency Network for grouping. We show that the Saliency Network recovers the most salient curve efficiently, but it has problems with identifying any salient curve other than the most salient one.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report describes a knowledge-base system in which the information is stored in a network of small parallel processing elements ??de and link units ??ich are controlled by an external serial computer. This network is similar to the semantic network system of Quillian, but is much more tightly controlled. Such a network can perform certain critical deductions and searches very quickly; it avoids many of the problems of current systems, which must use complex heuristics to limit and guided their searches. It is argued (with examples) that the key operation in a knowledge-base system is the intersection of large explicit and semi-explicit sets. The parallel network system does this in a small, essentially constant number of cycles; a serial machine takes time proportional to the size of the sets, except in special cases.