7 resultados para Semantic Uncertainty
em Massachusetts Institute of Technology
Resumo:
We consider the problem of matching model and sensory data features in the presence of geometric uncertainty, for the purpose of object localization and identification. The problem is to construct sets of model feature and sensory data feature pairs that are geometrically consistent given that there is uncertainty in the geometry of the sensory data features. If there is no geometric uncertainty, polynomial-time algorithms are possible for feature matching, yet these approaches can fail when there is uncertainty in the geometry of data features. Existing matching and recognition techniques which account for the geometric uncertainty in features either cannot guarantee finding a correct solution, or can construct geometrically consistent sets of feature pairs yet have worst case exponential complexity in terms of the number of features. The major new contribution of this work is to demonstrate a polynomial-time algorithm for constructing sets of geometrically consistent feature pairs given uncertainty in the geometry of the data features. We show that under a certain model of geometric uncertainty the feature matching problem in the presence of uncertainty is of polynomial complexity. This has important theoretical implications by demonstrating an upper bound on the complexity of the matching problem, an by offering insight into the nature of the matching problem itself. These insights prove useful in the solution to the matching problem in higher dimensional cases as well, such as matching three-dimensional models to either two or three-dimensional sensory data. The approach is based on an analysis of the space of feasible transformation parameters. This paper outlines the mathematical basis for the method, and describes the implementation of an algorithm for the procedure. Experiments demonstrating the method are reported.
Resumo:
Robots must plan and execute tasks in the presence of uncertainty. Uncertainty arises from sensing errors, control errors, and uncertainty in the geometry of the environment. The last, which is called model error, has received little previous attention. We present a framework for computing motion strategies that are guaranteed to succeed in the presence of all three kinds of uncertainty. The motion strategies comprise sensor-based gross motions, compliant motions, and simple pushing motions.
Resumo:
SIR is a computer system, programmed in the LISP language, which accepts information and answers questions expressed in a restricted form of English. This system demonstrates what can reasonably be called an ability to "understand" semantic information. SIR's semantic and deductive ability is based on the construction of an internal model, which uses word associations and property lists, for the relational information normally conveyed in conversational statements. A format-matching procedure extracts semantic content from English sentences. If an input sentence is declarative, the system adds appropriate information to the model. If an input sentence is a question, the system searches the model until it either finds the answer or determines why it cannot find the answer. In all cases SIR reports its conclusions. The system has some capacity to recognize exceptions to general rules, resolve certain semantic ambiguities, and modify its model structure in order to save computer memory space. Judging from its conversational ability, SIR, is a first step toward intelligent man-machine communication. The author proposes a next step by describing how to construct a more general system which is less complex and yet more powerful than SIR. This proposed system contains a generalized version of the SIR model, a formal logical system called SIR1, and a computer program for testing the truth of SIR1 statements with respect to the generalized model by using partial proof procedures in the predicate calculus. The thesis also describes the formal properties of SIR1 and how they relate to the logical structure of SIR.
Resumo:
The research reported here concerns the principles used to automatically generate three-dimensional representations from line drawings of scenes. The computer programs involved look at scenes which consist of polyhedra and which may contain shadows and various kinds of coincidentally aligned scene features. Each generated description includes information about edge shape (convex, concave, occluding, shadow, etc.), about the type of illumination for each region (illuminated, projected shadow, or oriented away from the light source), and about the spacial orientation of regions. The methods used are based on the labeling schemes of Huffman and Clowes; this research provides a considerable extension to their work and also gives theoretical explanations to the heuristic scene analysis work of Guzman, Winston, and others.
Resumo:
Robots must successfully plan and execute tasks in the presence of uncertainty. Uncertainty arises from errors in modeling, sensing, and control. Planning in the presence of uncertainty constitutes one facet of the general motion planning problem in robotics. This problem is concerned with the automatic synthesis of motion strategies from high level task specification and geometric models of environments. In order to develop successful motion strategies, it is necessary to understand the effect of uncertainty on the geometry of object interactions. Object interactions, both static and dynamic, may be represented in geometrical terms. This thesis investigates geometrical tools for modeling and overcoming uncertainty. The thesis describes an algorithm for computing backprojections o desired task configurations. Task goals and motion states are specified in terms of a moving object's configuration space. Backprojections specify regions in configuration space from which particular motions are guaranteed to accomplish a desired task. The backprojection algorithm considers surfaces in configuration space that facilitate sliding towards the goal, while avoiding surfaces on which motions may prematurely halt. In executing a motion for a backprojection region, a plan executor must be able to recognize that a desired task has been accomplished. Since sensors are subject to uncertainty, recognition of task success is not always possible. The thesis considers the structure of backprojection regions and of task goals that ensures goal recognizability. The thesis also develops a representation of friction in configuration space, in terms of a friction cone analogous to the real space friction cone. The friction cone provides the backprojection algorithm with a geometrical tool for determining points at which motions may halt.
Resumo:
Building robust recognition systems requires a careful understanding of the effects of error in sensed features. Error in these image features results in a region of uncertainty in the possible image location of each additional model feature. We present an accurate, analytic approximation for this uncertainty region when model poses are based on matching three image and model points, for both Gaussian and bounded error in the detection of image points, and for both scaled-orthographic and perspective projection models. This result applies to objects that are fully three- dimensional, where past results considered only two-dimensional objects. Further, we introduce a linear programming algorithm to compute the uncertainty region when poses are based on any number of initial matches. Finally, we use these results to extend, from two-dimensional to three- dimensional objects, robust implementations of alignmentt interpretation- tree search, and ransformation clustering.
Resumo:
The COntext INterchange (COIN) strategy is an approach to solving the problem of interoperability of semantically heterogeneous data sources through context mediation. COIN has used its own notation and syntax for representing ontologies. More recently, the OWL Web Ontology Language is becoming established as the W3C recommended ontology language. We propose the use of the COIN strategy to solve context disparity and ontology interoperability problems in the emerging Semantic Web – both at the ontology level and at the data level. In conjunction with this, we propose a version of the COIN ontology model that uses OWL and the emerging rules interchange language, RuleML.