2 resultados para Self-organizing networks

em Massachusetts Institute of Technology


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the properties of feedforward neural networks trained with Hebbian learning algorithms. A new unsupervised algorithm is proposed which produces statistically uncorrelated outputs. The algorithm causes the weights of the network to converge to the eigenvectors of the input correlation with largest eigenvalues. The algorithm is closely related to the technique of Self-supervised Backpropagation, as well as other algorithms for unsupervised learning. Applications of the algorithm to texture processing, image coding, and stereo depth edge detection are given. We show that the algorithm can lead to the development of filters qualitatively similar to those found in primate visual cortex.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Graphical techniques for modeling the dependencies of randomvariables have been explored in a variety of different areas includingstatistics, statistical physics, artificial intelligence, speech recognition, image processing, and genetics.Formalisms for manipulating these models have been developedrelatively independently in these research communities. In this paper weexplore hidden Markov models (HMMs) and related structures within the general framework of probabilistic independencenetworks (PINs). The paper contains a self-contained review of the basic principles of PINs.It is shown that the well-known forward-backward (F-B) and Viterbialgorithms for HMMs are special cases of more general inference algorithms forarbitrary PINs. Furthermore, the existence of inference and estimationalgorithms for more general graphical models provides a set of analysistools for HMM practitioners who wish to explore a richer class of HMMstructures.Examples of relatively complex models to handle sensorfusion and coarticulationin speech recognitionare introduced and treated within the graphical model framework toillustrate the advantages of the general approach.