1 resultado para Satisfaction with variable pay plans
em Massachusetts Institute of Technology
Filtro por publicador
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Aberystwyth University Repository - Reino Unido (3)
- Academic Archive On-line (Jönköping University; Sweden) (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- Aquatic Commons (8)
- Archive of European Integration (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (3)
- Aston University Research Archive (12)
- B-Digital - Universidade Fernando Pessoa - Portugal (3)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (13)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (1)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (12)
- Bioline International (4)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (51)
- Boston University Digital Common (4)
- Brock University, Canada (15)
- Bucknell University Digital Commons - Pensilvania - USA (3)
- Bulgarian Digital Mathematics Library at IMI-BAS (2)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (10)
- CentAUR: Central Archive University of Reading - UK (16)
- Central European University - Research Support Scheme (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (30)
- Cochin University of Science & Technology (CUSAT), India (1)
- Coffee Science - Universidade Federal de Lavras (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (5)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (2)
- Dalarna University College Electronic Archive (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (4)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons - Michigan Tech (3)
- Digital Commons at Florida International University (16)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (14)
- DigitalCommons@University of Nebraska - Lincoln (1)
- DRUM (Digital Repository at the University of Maryland) (6)
- Duke University (4)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (2)
- Greenwich Academic Literature Archive - UK (3)
- Helda - Digital Repository of University of Helsinki (18)
- Indian Institute of Science - Bangalore - Índia (53)
- Instituto Politécnico de Viseu (3)
- Instituto Politécnico do Porto, Portugal (7)
- Instituto Superior de Psicologia Aplicada - Lisboa (3)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Massachusetts Institute of Technology (1)
- Memorial University Research Repository (1)
- Ministerio de Cultura, Spain (4)
- National Center for Biotechnology Information - NCBI (6)
- Nottingham eTheses (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (3)
- Portal de Revistas Científicas Complutenses - Espanha (3)
- Publishing Network for Geoscientific & Environmental Data (2)
- QSpace: Queen's University - Canada (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (87)
- Queensland University of Technology - ePrints Archive (177)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- REPOSITÓRIO ABERTO do Instituto Superior Miguel Torga - Portugal (1)
- Repositório Científico da Universidade de Évora - Portugal (4)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (6)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório Institucional da Universidade de Aveiro - Portugal (12)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (47)
- Research Open Access Repository of the University of East London. (2)
- RIBERDIS - Repositorio IBERoamericano sobre DIScapacidad - Centro Español de Documentación sobre Discapacidad (CEDD) (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (5)
- SAPIENTIA - Universidade do Algarve - Portugal (4)
- School of Medicine, Washington University, United States (1)
- Scielo España (2)
- SerWisS - Server für Wissenschaftliche Schriften der Fachhochschule Hannover (2)
- The Scholarly Commons | School of Hotel Administration; Cornell University Research (1)
- Universidad de Alicante (5)
- Universidad del Rosario, Colombia (3)
- Universidad Politécnica de Madrid (10)
- Universidade de Lisboa - Repositório Aberto (8)
- Universidade dos Açores - Portugal (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (4)
- Universidade Metodista de São Paulo (11)
- Universidade Técnica de Lisboa (1)
- Université de Lausanne, Switzerland (5)
- Université de Montréal (2)
- Université de Montréal, Canada (32)
- University of Canberra Research Repository - Australia (1)
- University of Connecticut - USA (3)
- University of Michigan (6)
- University of Queensland eSpace - Australia (21)
- University of Washington (1)
- Worcester Research and Publications - Worcester Research and Publications - UK (2)
Resumo:
This thesis presents a learning based approach for detecting classes of objects and patterns with variable image appearance but highly predictable image boundaries. It consists of two parts. In part one, we introduce our object and pattern detection approach using a concrete human face detection example. The approach first builds a distribution-based model of the target pattern class in an appropriate feature space to describe the target's variable image appearance. It then learns from examples a similarity measure for matching new patterns against the distribution-based target model. The approach makes few assumptions about the target pattern class and should therefore be fairly general, as long as the target class has predictable image boundaries. Because our object and pattern detection approach is very much learning-based, how well a system eventually performs depends heavily on the quality of training examples it receives. The second part of this thesis looks at how one can select high quality examples for function approximation learning tasks. We propose an {em active learning} formulation for function approximation, and show for three specific approximation function classes, that the active example selection strategy learns its target with fewer data samples than random sampling. We then simplify the original active learning formulation, and show how it leads to a tractable example selection paradigm, suitable for use in many object and pattern detection problems.