2 resultados para STEADY-STATE VOLTAMMOGRAMS
em Massachusetts Institute of Technology
Resumo:
In this paper a precorrected FFT-Fast Multipole Tree (pFFT-FMT) method for solving the potential flow around arbitrary three dimensional bodies is presented. The method takes advantage of the efficiency of the pFFT and FMT algorithms to facilitate more demanding computations such as automatic wake generation and hands-off steady and unsteady aerodynamic simulations. The velocity potential on the body surfaces and in the domain is determined using a pFFT Boundary Element Method (BEM) approach based on the Green’s Theorem Boundary Integral Equation. The vorticity trailing all lifting surfaces in the domain is represented using a Fast Multipole Tree, time advected, vortex participle method. Some simple steady state flow solutions are performed to demonstrate the basic capabilities of the solver. Although this paper focuses primarily on steady state solutions, it should be noted that this approach is designed to be a robust and efficient unsteady potential flow simulation tool, useful for rapid computational prototyping.
Resumo:
The Bifurcation Interpreter is a computer program that autonomously explores the steady-state orbits of one-parameter families of periodically- driven oscillators. To report its findings, the Interpreter generates schematic diagrams and English text descriptions similar to those appearing in the science and engineering research literature. Given a system of equations as input, the Interpreter uses symbolic algebra to automatically generate numerical procedures that simulate the system. The Interpreter incorporates knowledge about dynamical systems theory, which it uses to guide the simulations, to interpret the results, and to minimize the effects of numerical error.