2 resultados para SEXUAL DISCRIMINATION
em Massachusetts Institute of Technology
Resumo:
This report examines why women pursue careers in computer science and related fields far less frequently than men do. In 1990, only 13% of PhDs in computer science went to women, and only 7.8% of computer science professors were female. Causes include the different ways in which boys and girls are raised, the stereotypes of female engineers, subtle biases that females face, problems resulting from working in predominantly male environments, and sexual biases in language. A theme of the report is that women's underrepresentation is not primarily due to direct discrimination but to subconscious behavior that perpetuates the status quo.
Resumo:
We present a general framework for discriminative estimation based on the maximum entropy principle and its extensions. All calculations involve distributions over structures and/or parameters rather than specific settings and reduce to relative entropy projections. This holds even when the data is not separable within the chosen parametric class, in the context of anomaly detection rather than classification, or when the labels in the training set are uncertain or incomplete. Support vector machines are naturally subsumed under this class and we provide several extensions. We are also able to estimate exactly and efficiently discriminative distributions over tree structures of class-conditional models within this framework. Preliminary experimental results are indicative of the potential in these techniques.