1 resultado para SAMPLE DILUTION
em Massachusetts Institute of Technology
Filtro por publicador
- JISC Information Environment Repository (2)
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (3)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- Aquatic Commons (8)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (14)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (3)
- Aston University Research Archive (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (30)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (15)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (100)
- Brock University, Canada (13)
- Bucknell University Digital Commons - Pensilvania - USA (3)
- CaltechTHESIS (2)
- Cambridge University Engineering Department Publications Database (33)
- CentAUR: Central Archive University of Reading - UK (46)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (42)
- Cochin University of Science & Technology (CUSAT), India (3)
- Collection Of Biostatistics Research Archive (3)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (9)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- CUNY Academic Works (4)
- Dalarna University College Electronic Archive (2)
- Digital Commons - Michigan Tech (1)
- DigitalCommons@The Texas Medical Center (15)
- DigitalCommons@University of Nebraska - Lincoln (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (2)
- Greenwich Academic Literature Archive - UK (1)
- Helda - Digital Repository of University of Helsinki (6)
- Indian Institute of Science - Bangalore - Índia (8)
- Instituto Politécnico de Viseu (1)
- Instituto Politécnico do Porto, Portugal (4)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (1)
- Ministerio de Cultura, Spain (13)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (8)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (64)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (73)
- Queensland University of Technology - ePrints Archive (119)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (3)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (107)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- School of Medicine, Washington University, United States (7)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (1)
- Universidade dos Açores - Portugal (1)
- Universidade Federal do Pará (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (8)
- Universitat de Girona, Spain (3)
- Université de Lausanne, Switzerland (10)
- Université de Montréal, Canada (19)
- University of Southampton, United Kingdom (6)
- WestminsterResearch - UK (1)
Resumo:
In this paper, we bound the generalization error of a class of Radial Basis Function networks, for certain well defined function learning tasks, in terms of the number of parameters and number of examples. We show that the total generalization error is partly due to the insufficient representational capacity of the network (because of its finite size) and partly due to insufficient information about the target function (because of finite number of samples). We make several observations about generalization error which are valid irrespective of the approximation scheme. Our result also sheds light on ways to choose an appropriate network architecture for a particular problem.