3 resultados para Run-Time

em Massachusetts Institute of Technology


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We consider the problem of detecting a large number of different classes of objects in cluttered scenes. Traditional approaches require applying a battery of different classifiers to the image, at multiple locations and scales. This can be slow and can require a lot of training data, since each classifier requires the computation of many different image features. In particular, for independently trained detectors, the (run-time) computational complexity, and the (training-time) sample complexity, scales linearly with the number of classes to be detected. It seems unlikely that such an approach will scale up to allow recognition of hundreds or thousands of objects. We present a multi-class boosting procedure (joint boosting) that reduces the computational and sample complexity, by finding common features that can be shared across the classes (and/or views). The detectors for each class are trained jointly, rather than independently. For a given performance level, the total number of features required, and therefore the computational cost, is observed to scale approximately logarithmically with the number of classes. The features selected jointly are closer to edges and generic features typical of many natural structures instead of finding specific object parts. Those generic features generalize better and reduce considerably the computational cost of an algorithm for multi-class object detection.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have developed a compiler for the lexically-scoped dialect of LISP known as SCHEME. The compiler knows relatively little about specific data manipulation primitives such as arithmetic operators, but concentrates on general issues of environment and control. Rather than having specialized knowledge about a large variety of control and environment constructs, the compiler handles only a small basis set which reflects the semantics of lambda-calculus. All of the traditional imperative constructs, such as sequencing, assignment, looping, GOTO, as well as many standard LISP constructs such as AND, OR, and COND, are expressed in macros in terms of the applicative basis set. A small number of optimization techniques, coupled with the treatment of function calls as GOTO statements, serve to produce code as good as that produced by more traditional compilers. The macro approach enables speedy implementation of new constructs as desired without sacrificing efficiency in the generated code. A fair amount of analysis is devoted to determining whether environments may be stack-allocated or must be heap-allocated. Heap-allocated environments are necessary in general because SCHEME (unlike Algol 60 and Algol 68, for example) allows procedures with free lexically scoped variables to be returned as the values of other procedures; the Algol stack-allocation environment strategy does not suffice. The methods used here indicate that a heap-allocating generalization of the "display" technique leads to an efficient implementation of such "upward funargs". Moreover, compile-time optimization and analysis can eliminate many "funargs" entirely, and so far fewer environment structures need be allocated at run time than might be expected. A subset of SCHEME (rather than triples, for example) serves as the representation intermediate between the optimized SCHEME code and the final output code; code is expressed in this subset in the so-called continuation-passing style. As a subset of SCHEME, it enjoys the same theoretical properties; one could even apply the same optimizer used on the input code to the intermediate code. However, the subset is so chosen that all temporary quantities are made manifest as variables, and no control stack is needed to evaluate it. As a result, this apparently applicative representation admits an imperative interpretation which permits easy transcription to final imperative machine code. These qualities suggest that an applicative language like SCHEME is a better candidate for an UNCOL than the more imperative candidates proposed to date.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

General-purpose computing devices allow us to (1) customize computation after fabrication and (2) conserve area by reusing expensive active circuitry for different functions in time. We define RP-space, a restricted domain of the general-purpose architectural space focussed on reconfigurable computing architectures. Two dominant features differentiate reconfigurable from special-purpose architectures and account for most of the area overhead associated with RP devices: (1) instructions which tell the device how to behave, and (2) flexible interconnect which supports task dependent dataflow between operations. We can characterize RP-space by the allocation and structure of these resources and compare the efficiencies of architectural points across broad application characteristics. Conventional FPGAs fall at one extreme end of this space and their efficiency ranges over two orders of magnitude across the space of application characteristics. Understanding RP-space and its consequences allows us to pick the best architecture for a task and to search for more robust design points in the space. Our DPGA, a fine- grained computing device which adds small, on-chip instruction memories to FPGAs is one such design point. For typical logic applications and finite- state machines, a DPGA can implement tasks in one-third the area of a traditional FPGA. TSFPGA, a variant of the DPGA which focuses on heavily time-switched interconnect, achieves circuit densities close to the DPGA, while reducing typical physical mapping times from hours to seconds. Rigid, fabrication-time organization of instruction resources significantly narrows the range of efficiency for conventional architectures. To avoid this performance brittleness, we developed MATRIX, the first architecture to defer the binding of instruction resources until run-time, allowing the application to organize resources according to its needs. Our focus MATRIX design point is based on an array of 8-bit ALU and register-file building blocks interconnected via a byte-wide network. With today's silicon, a single chip MATRIX array can deliver over 10 Gop/s (8-bit ops). On sample image processing tasks, we show that MATRIX yields 10-20x the computational density of conventional processors. Understanding the cost structure of RP-space helps us identify these intermediate architectural points and may provide useful insight more broadly in guiding our continual search for robust and efficient general-purpose computing structures.