3 resultados para Rotational movement
em Massachusetts Institute of Technology
Resumo:
The study of granular material is of great interest to many researchers in both engineering and science communities. The importance of such a study derives from its complex rheological character and also its significant role in a wide range of industrial applications, such as coal, food, plastics, pharmaceutical, powder metallurgy and mineral processing. A number of recent reports have been focused on the physics of non-cohesive granular material submitted to vertical vibration in either experimental or theoretical approaches. Such a kind of system can be used to separate, mix and dry granular materials in industries. It exhibits different instability behaviour on its surface when under vertical vibration, for example, avalanching, surface fluidization and surface wave, and these phenomena have attracted particular interest of many researchers. However, its fundamental understanding of the instability mechanism is not yet well-understood. This paper is therefore to study the dynamics of granular motion in such a kind of system using Positron Emission Particle Tracking (PEPT), which allows the motion of a single tracer particle to be followed in a non-invasive way. Features of the solids motion such as cycle frequency and dispersion index were investigated via means of authors’ specially-written programmes. Regardless of the surface behaviour, particles are found to travel in rotational movement in horizontal plane. Particle cycle frequency is found to increase strongly with increasing vibration amplitude. Particle dispersion also increased strongly with vibration amplitude. Horizontal dispersion is observed to always exceed vertical dispersion.
Resumo:
This thesis describes a new representation for two-dimensional round regions called Local Rotational Symmetries. Local Rotational Symmetries are intended as a companion to Brady's Smoothed Local Symmetry Representation for elongated shapes. An algorithm for computing Local Rotational Symmetry representations at multiple scales of resolution has been implemented and results of this implementation are presented. These results suggest that Local Rotational Symmetries provide a more robustly computable and perceptually accurate description of round regions than previous proposed representations. In the course of developing this representation, it has been necessary to modify the way both Smoothed Local Symmetries and Local Rotational Symmetries are computed. First, grey-scale image smoothing proves to be better than boundary smoothing for creating representations at multiple scales of resolution, because it is more robust and it allows qualitative changes in representations between scales. Secondly, it is proposed that shape representations at different scales of resolution be explicitly related, so that information can be passed between scales and computation at each scale can be kept local. Such a model for multi-scale computation is desirable both to allow efficient computation and to accurately model human perceptions.
Resumo:
A serial-link manipulator may form a mobile closed kinematic chain when interacting with the environment, if it is redundant with respect to the task degrees of freedom (DOFs) at the endpoint. If the mobile closed chain assumes a number of configurations, then loop consistency equations permit the manipulator and task kinematics to be calibrated simultaneously using only the joint angle readings; endpoint sensing is not required. Example tasks include a fixed endpoint (0 DOF task), the opening of a door (1 DOF task), and point contact (3 DOF task). Identifiability conditions are derived for these various tasks.