5 resultados para Rotational inertia
em Massachusetts Institute of Technology
Resumo:
In this paper we present an approach to perceptual organization and attention based on Curved Inertia Frames (C.I.F.), a novel definition of "curved axis of inertia'' tolerant to noisy and spurious data. The definition is useful because it can find frames that correspond to large, smooth, convex, symmetric and central parts. It is novel because it is global and can detect curved axes. We discuss briefly the relation to human perception, the recognition of non-rigid objects, shape description, and extensions to finding "features", inside/outside relations, and long- smooth ridges in arbitrary surfaces.
Resumo:
This thesis describes a new representation for two-dimensional round regions called Local Rotational Symmetries. Local Rotational Symmetries are intended as a companion to Brady's Smoothed Local Symmetry Representation for elongated shapes. An algorithm for computing Local Rotational Symmetry representations at multiple scales of resolution has been implemented and results of this implementation are presented. These results suggest that Local Rotational Symmetries provide a more robustly computable and perceptually accurate description of round regions than previous proposed representations. In the course of developing this representation, it has been necessary to modify the way both Smoothed Local Symmetries and Local Rotational Symmetries are computed. First, grey-scale image smoothing proves to be better than boundary smoothing for creating representations at multiple scales of resolution, because it is more robust and it allows qualitative changes in representations between scales. Secondly, it is proposed that shape representations at different scales of resolution be explicitly related, so that information can be passed between scales and computation at each scale can be kept local. Such a model for multi-scale computation is desirable both to allow efficient computation and to accurately model human perceptions.
Resumo:
We address mid-level vision for the recognition of non-rigid objects. We align model and image using frame curves - which are object or "figure/ground" skeletons. Frame curves are computed, without discontinuities, using Curved Inertia Frames, a provably global scheme implemented on the Connection Machine, based on: non-cartisean networks; a definition of curved axis of inertia; and a ridge detector. I present evidence against frame alignment in human perception. This suggests: frame curves have a role in figure/ground segregation and in fuzzy boundaries; their outside/near/top/ incoming regions are more salient; and that perception begins by setting a reference frame (prior to early vision), and proceeds by processing convex structures.
Resumo:
The goal of this work is to navigate through an office environmentsusing only visual information gathered from four cameras placed onboard a mobile robot. The method is insensitive to physical changes within the room it is inspecting, such as moving objects. Forward and rotational motion vision are used to find doors and rooms, and these can be used to build topological maps. The map is built without the use of odometry or trajectory integration. The long term goal of the project described here is for the robot to build simple maps of its environment and to localize itself within this framework.
Resumo:
The motion planning problem is of central importance to the fields of robotics, spatial planning, and automated design. In robotics we are interested in the automatic synthesis of robot motions, given high-level specifications of tasks and geometric models of the robot and obstacles. The Mover's problem is to find a continuous, collision-free path for a moving object through an environment containing obstacles. We present an implemented algorithm for the classical formulation of the three-dimensional Mover's problem: given an arbitrary rigid polyhedral moving object P with three translational and three rotational degrees of freedom, find a continuous, collision-free path taking P from some initial configuration to a desired goal configuration. This thesis describes the first known implementation of a complete algorithm (at a given resolution) for the full six degree of freedom Movers' problem. The algorithm transforms the six degree of freedom planning problem into a point navigation problem in a six-dimensional configuration space (called C-Space). The C-Space obstacles, which characterize the physically unachievable configurations, are directly represented by six-dimensional manifolds whose boundaries are five dimensional C-surfaces. By characterizing these surfaces and their intersections, collision-free paths may be found by the closure of three operators which (i) slide along 5-dimensional intersections of level C-Space obstacles; (ii) slide along 1- to 4-dimensional intersections of level C-surfaces; and (iii) jump between 6 dimensional obstacles. Implementing the point navigation operators requires solving fundamental representational and algorithmic questions: we will derive new structural properties of the C-Space constraints and shoe how to construct and represent C-Surfaces and their intersection manifolds. A definition and new theoretical results are presented for a six-dimensional C-Space extension of the generalized Voronoi diagram, called the C-Voronoi diagram, whose structure we relate to the C-surface intersection manifolds. The representations and algorithms we develop impact many geometric planning problems, and extend to Cartesian manipulators with six degrees of freedom.