5 resultados para Rotated lattices

em Massachusetts Institute of Technology


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The inferior temporal cortex (IT) of monkeys is thought to play an essential role in visual object recognition. Inferotemporal neurons are known to respond to complex visual stimuli, including patterns like faces, hands, or other body parts. What is the role of such neurons in object recognition? The present study examines this question in combined psychophysical and electrophysiological experiments, in which monkeys learned to classify and recognize novel visual 3D objects. A population of neurons in IT were found to respond selectively to such objects that the monkeys had recently learned to recognize. A large majority of these cells discharged maximally for one view of the object, while their response fell off gradually as the object was rotated away from the neuron"s preferred view. Most neurons exhibited orientation-dependent responses also during view-plane rotations. Some neurons were found tuned around two views of the same object, while a very small number of cells responded in a view- invariant manner. For five different objects that were extensively used during the training of the animals, and for which behavioral performance became view-independent, multiple cells were found that were tuned around different views of the same object. No selective responses were ever encountered for views that the animal systematically failed to recognize. The results of our experiments suggest that neurons in this area can develop a complex receptive field organization as a consequence of extensive training in the discrimination and recognition of objects. Simple geometric features did not appear to account for the neurons" selective responses. These findings support the idea that a population of neurons -- each tuned to a different object aspect, and each showing a certain degree of invariance to image transformations -- may, as an assembly, encode complex 3D objects. In such a system, several neurons may be active for any given vantage point, with a single unit acting like a blurred template for a limited neighborhood of a single view.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

If we are provided a face database with only one example view per person, is it possible to recognize new views of them under a variety of different poses, especially views rotated in depth from the original example view? We investigate using prior knowledge about faces plus each single example view to generate virtual views of each person, or views of the face as seen from different poses. Prior knowledge of faces is represented in an example-based way, using 2D views of a prototype face seen rotating in depth. The synthesized virtual views are evaluated as example views in a view-based approach to pose-invariant face recognition. They are shown to improve the recognition rate over the scenario where only the single real view is used.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We provide a theory of the three-dimensional interpretation of a class of line-drawings called p-images, which are interpreted by the human vision system as parallelepipeds ("boxes"). Despite their simplicity, p-images raise a number of interesting vision questions: *Why are p-images seen as three-dimensional objects? Why not just as flatimages? *What are the dimensions and pose of the perceived objects? *Why are some p-images interpreted as rectangular boxes, while others are seen as skewed, even though there is no obvious distinction between the images? *When p-images are rotated in three dimensions, why are the image-sequences perceived as distorting objects---even though structure-from-motion would predict that rigid objects would be seen? *Why are some three-dimensional parallelepipeds seen as radically different when viewed from different viewpoints? We show that these and related questions can be answered with the help of a single mathematical result and an associated perceptual principle. An interesting special case arises when there are right angles in the p-image. This case represents a singularity in the equations and is mystifying from the vision point of view. It would seem that (at least in this case) the vision system does not follow the ordinary rules of geometry but operates in accordance with other (and as yet unknown) principles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ontic is an interactive system for developing and verifying mathematics. Ontic's verification mechanism is capable of automatically finding and applying information from a library containing hundreds of mathematical facts. Starting with only the axioms of Zermelo-Fraenkel set theory, the Ontic system has been used to build a data base of definitions and lemmas leading to a proof of the Stone representation theorem for Boolean lattices. The Ontic system has been used to explore issues in knowledge representation, automated deduction, and the automatic use of large data bases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this report, a face recognition system that is capable of detecting and recognizing frontal and rotated faces was developed. Two face recognition methods focusing on the aspect of pose invariance are presented and evaluated - the whole face approach and the component-based approach. The main challenge of this project is to develop a system that is able to identify faces under different viewing angles in realtime. The development of such a system will enhance the capability and robustness of current face recognition technology. The whole-face approach recognizes faces by classifying a single feature vector consisting of the gray values of the whole face image. The component-based approach first locates the facial components and extracts them. These components are normalized and combined into a single feature vector for classification. The Support Vector Machine (SVM) is used as the classifier for both approaches. Extensive tests with respect to the robustness against pose changes are performed on a database that includes faces rotated up to about 40 degrees in depth. The component-based approach clearly outperforms the whole-face approach on all tests. Although this approach isproven to be more reliable, it is still too slow for real-time applications. That is the reason why a real-time face recognition system using the whole-face approach is implemented to recognize people in color video sequences.