1 resultado para Roles
em Massachusetts Institute of Technology
Filtro por publicador
- JISC Information Environment Repository (1)
- Aberdeen University (4)
- Aberystwyth University Repository - Reino Unido (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (3)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (2)
- Aquatic Commons (5)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (4)
- Aston University Research Archive (30)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (8)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (5)
- Biblioteca Digital de la Universidad del Valle - Colombia (1)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (71)
- Boston University Digital Common (1)
- Brock University, Canada (15)
- Brunel University (1)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- CaltechTHESIS (2)
- Cámara de Comercio de Bogotá, Colombia (1)
- Cambridge University Engineering Department Publications Database (17)
- CentAUR: Central Archive University of Reading - UK (46)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (28)
- Cochin University of Science & Technology (CUSAT), India (1)
- Coffee Science - Universidade Federal de Lavras (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (11)
- CORA - Cork Open Research Archive - University College Cork - Ireland (3)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (4)
- Dalarna University College Electronic Archive (6)
- Digital Archives@Colby (3)
- Digital Commons @ DU | University of Denver Research (3)
- Digital Commons @ Winthrop University (1)
- Digital Commons at Florida International University (12)
- DigitalCommons@The Texas Medical Center (27)
- DRUM (Digital Repository at the University of Maryland) (7)
- Duke University (8)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Greenwich Academic Literature Archive - UK (2)
- Harvard University (3)
- Helda - Digital Repository of University of Helsinki (21)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (23)
- Instituto Superior de Psicologia Aplicada - Lisboa (2)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (1)
- Memoria Académica - FaHCE, UNLP - Argentina (34)
- Ministerio de Cultura, Spain (29)
- National Center for Biotechnology Information - NCBI (78)
- Nottingham eTheses (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (3)
- QSpace: Queen's University - Canada (4)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (75)
- Queensland University of Technology - ePrints Archive (94)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositorio de la Universidad del Pacífico - PERU (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositorio Institucional de la Universidad de La Laguna (2)
- Repositorio Institucional de la Universidad de Málaga (3)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (20)
- Repositorio Institucional UNISALLE - Colombia (2)
- Royal College of Art Research Repository - Uninet Kingdom (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (3)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- School of Medicine, Washington University, United States (3)
- Universidad Autónoma de Nuevo León, Mexico (5)
- Universidad de Alicante (2)
- Universidad del Rosario, Colombia (3)
- Universidad Politécnica de Madrid (7)
- Universidade Complutense de Madrid (3)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (1)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (4)
- Université de Montréal (1)
- Université de Montréal, Canada (7)
- University of Canberra Research Repository - Australia (1)
- University of Connecticut - USA (2)
- University of Michigan (13)
- University of Queensland eSpace - Australia (56)
- University of Southampton, United Kingdom (1)
- University of Washington (9)
- WestminsterResearch - UK (3)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
The goal of this thesis is to apply the computational approach to motor learning, i.e., describe the constraints that enable performance improvement with experience and also the constraints that must be satisfied by a motor learning system, describe what is being computed in order to achieve learning, and why it is being computed. The particular tasks used to assess motor learning are loaded and unloaded free arm movement, and the thesis includes work on rigid body load estimation, arm model estimation, optimal filtering for model parameter estimation, and trajectory learning from practice. Learning algorithms have been developed and implemented in the context of robot arm control. The thesis demonstrates some of the roles of knowledge in learning. Powerful generalizations can be made on the basis of knowledge of system structure, as is demonstrated in the load and arm model estimation algorithms. Improving the performance of parameter estimation algorithms used in learning involves knowledge of the measurement noise characteristics, as is shown in the derivation of optimal filters. Using trajectory errors to correct commands requires knowledge of how command errors are transformed into performance errors, i.e., an accurate model of the dynamics of the controlled system, as is demonstrated in the trajectory learning work. The performance demonstrated by the algorithms developed in this thesis should be compared with algorithms that use less knowledge, such as table based schemes to learn arm dynamics, previous single trajectory learning algorithms, and much of traditional adaptive control.