8 resultados para Riley, Eric
em Massachusetts Institute of Technology
Resumo:
The computer science technique of computational complexity analysis can provide powerful insights into the algorithm-neutral analysis of information processing tasks. Here we show that a simple, theory-neutral linguistic model of syntactic agreement and ambiguity demonstrates that natural language parsing may be computationally intractable. Significantly, we show that it may be syntactic features rather than rules that can cause this difficulty. Informally, human languages and the computationally intractable Satisfiability (SAT) problem share two costly computional mechanisms: both enforce agreement among symbols across unbounded distances (Subject-Verb agreement) and both allow ambiguity (is a word a Noun or a Verb?).
Resumo:
Many current recognition systems use constrained search to locate objects in cluttered environments. Previous formal analysis has shown that the expected amount of search is quadratic in the number of model and data features, if all the data is known to come from a sinlge object, but is exponential when spurious data is included. If one can group the data into subsets likely to have come from a single object, then terminating the search once a "good enough" interpretation is found reduces the expected search to cubic. Without successful grouping, terminated search is still exponential. These results apply to finding instances of a known object in the data. In this paper, we turn to the problem of selecting models from a library, and examine the combinatorics of determining that a candidate object is not present in the data. We show that the expected search is again exponential, implying that naﶥ approaches to indexing are likely to carry an expensive overhead, since an exponential amount of work is needed to week out each of the incorrect models. The analytic results are shown to be in agreement with empirical data for cluttered object recognition.
Resumo:
Affine transformations are often used in recognition systems, to approximate the effects of perspective projection. The underlying mathematics is for exact feature data, with no positional uncertainty. In practice, heuristics are added to handle uncertainty. We provide a precise analysis of affine point matching, obtaining an expression for the range of affine-invariant values consistent with bounded uncertainty. This analysis reveals that the range of affine-invariant values depends on the actual $x$-$y$-positions of the features, i.e. with uncertainty, affine representations are not invariant with respect to the Cartesian coordinate system. We analyze the effect of this on geometric hashing and alignment recognition methods.
Resumo:
In order to recognize an object in an image, we must determine the best transformation from object model to the image. In this paper, we show that for features from coplanar surfaces which undergo linear transformations in space, there exist projections invariant to the surface motions up to rotations in the image field. To use this property, we propose a new alignment approach to object recognition based on centroid alignment of corresponding feature groups. This method uses only a single pair of 2D model and data. Experimental results show the robustness of the proposed method against perturbations of feature positions.
Resumo:
The primary goal of this report is to demonstrate how considerations from computational complexity theory can inform grammatical theorizing. To this end, generalized phrase structure grammar (GPSG) linguistic theory is revised so that its power more closely matches the limited ability of an ideal speaker--hearer: GPSG Recognition is EXP-POLY time hard, while Revised GPSG Recognition is NP-complete. A second goal is to provide a theoretical framework within which to better understand the wide range of existing GPSG models, embodied in formal definitions as well as in implemented computer programs. A grammar for English and an informal explanation of the GPSG/RGPSG syntactic features are included in appendices.
Resumo:
This work addresses two related questions. The first question is what joint time-frequency energy representations are most appropriate for auditory signals, in particular, for speech signals in sonorant regions. The quadratic transforms of the signal are examined, a large class that includes, for example, the spectrograms and the Wigner distribution. Quasi-stationarity is not assumed, since this would neglect dynamic regions. A set of desired properties is proposed for the representation: (1) shift-invariance, (2) positivity, (3) superposition, (4) locality, and (5) smoothness. Several relations among these properties are proved: shift-invariance and positivity imply the transform is a superposition of spectrograms; positivity and superposition are equivalent conditions when the transform is real; positivity limits the simultaneous time and frequency resolution (locality) possible for the transform, defining an uncertainty relation for joint time-frequency energy representations; and locality and smoothness tradeoff by the 2-D generalization of the classical uncertainty relation. The transform that best meets these criteria is derived, which consists of two-dimensionally smoothed Wigner distributions with (possibly oriented) 2-D guassian kernels. These transforms are then related to time-frequency filtering, a method for estimating the time-varying 'transfer function' of the vocal tract, which is somewhat analogous to ceptstral filtering generalized to the time-varying case. Natural speech examples are provided. The second question addressed is how to obtain a rich, symbolic description of the phonetically relevant features in these time-frequency energy surfaces, the so-called schematic spectrogram. Time-frequency ridges, the 2-D analog of spectral peaks, are one feature that is proposed. If non-oriented kernels are used for the energy representation, then the ridge tops can be identified, with zero-crossings in the inner product of the gradient vector and the direction of greatest downward curvature. If oriented kernels are used, the method can be generalized to give better orientation selectivity (e.g., at intersecting ridges) at the cost of poorer time-frequency locality. Many speech examples are given showing the performance for some traditionally difficult cases: semi-vowels and glides, nasalized vowels, consonant-vowel transitions, female speech, and imperfect transmission channels.
Resumo:
This report shows how knowledge about the visual world can be built into a shape representation in the form of a descriptive vocabulary making explicit the important geometrical relationships comprising objects' shapes. Two computational tools are offered: (1) Shapestokens are placed on a Scale-Space Blackboard, (2) Dimensionality-reduction captures deformation classes in configurations of tokens. Knowledge lies in the token types and deformation classes tailored to the constraints and regularities ofparticular shape worlds. A hierarchical shape vocabulary has been implemented supporting several later visual tasks in the two-dimensional shape domain of the dorsal fins of fishes.
Resumo:
This thesis explores how to represent image texture in order to obtain information about the geometry and structure of surfaces, with particular emphasis on locating surface discontinuities. Theoretical and psychophysical results lead to the following conclusions for the representation of image texture: (1) A texture edge primitive is needed to identify texture change contours, which are formed by an abrupt change in the 2-D organization of similar items in an image. The texture edge can be used for locating discontinuities in surface structure and surface geometry and for establishing motion correspondence. (2) Abrupt changes in attributes that vary with changing surface geometry ??ientation, density, length, and width ??ould be used to identify discontinuities in surface geometry and surface structure. (3) Texture tokens are needed to separate the effects of different physical processes operating on a surface. They represent the local structure of the image texture. Their spatial variation can be used in the detection of texture discontinuities and texture gradients, and their temporal variation may be used for establishing motion correspondence. What precisely constitutes the texture tokens is unknown; it appears, however, that the intensity changes alone will not suffice, but local groupings of them may. (4) The above primitives need to be assigned rapidly over a large range in an image.