2 resultados para Retaining

em Massachusetts Institute of Technology


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis presents the development of hardware, theory, and experimental methods to enable a robotic manipulator arm to interact with soils and estimate soil properties from interaction forces. Unlike the majority of robotic systems interacting with soil, our objective is parameter estimation, not excavation. To this end, we design our manipulator with a flat plate for easy modeling of interactions. By using a flat plate, we take advantage of the wealth of research on the similar problem of earth pressure on retaining walls. There are a number of existing earth pressure models. These models typically provide estimates of force which are in uncertain relation to the true force. A recent technique, known as numerical limit analysis, provides upper and lower bounds on the true force. Predictions from the numerical limit analysis technique are shown to be in good agreement with other accepted models. Experimental methods for plate insertion, soil-tool interface friction estimation, and control of applied forces on the soil are presented. In addition, a novel graphical technique for inverting the soil models is developed, which is an improvement over standard nonlinear optimization. This graphical technique utilizes the uncertainties associated with each set of force measurements to obtain all possible parameters which could have produced the measured forces. The system is tested on three cohesionless soils, two in a loose state and one in a loose and dense state. The results are compared with friction angles obtained from direct shear tests. The results highlight a number of key points. Common assumptions are made in soil modeling. Most notably, the Mohr-Coulomb failure law and perfectly plastic behavior. In the direct shear tests, a marked dependence of friction angle on the normal stress at low stresses is found. This has ramifications for any study of friction done at low stresses. In addition, gradual failures are often observed for vertical tools and tools inclined away from the direction of motion. After accounting for the change in friction angle at low stresses, the results show good agreement with the direct shear values.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Porous tin oxide nanotubes were obtained by vacuum infiltration of tin oxide nanoparticles into porous aluminum oxide membranes, followed by calcination. The porous tin oxide nanotube arrays so prepared were characterized by FE-SEM, TEM, HRTEM, and XRD. The nanotubes are open-ended, highly ordered with uniform cross-sections, diameters and wall thickness. The tin oxide nanotubes were evaluated as a substitute anode material for the lithium ion batteries. The tin oxide nanotube anode could be charged and discharged repeatedly, retaining a specific capacity of 525 mAh/g after 80 cycles. This capacity is significantly higher than the theoretical capacity of commercial graphite anode (372 mAh/g) and the cyclability is outstanding for a tin based electrode. The cyclability and capacities of the tin oxide nanotubes were also higher than their building blocks of solid tin oxide nanoparticles. A few factors accounting for the good cycling performance and high capacity of tin oxide nanotubes are suggested.