3 resultados para Resistivity sensors
em Massachusetts Institute of Technology
Resumo:
This thesis presents methods for implementing robust hexpod locomotion on an autonomous robot with many sensors and actuators. The controller is based on the Subsumption Architecture and is fully distributed over approximately 1500 simple, concurrent processes. The robot, Hannibal, weighs approximately 6 pounds and is equipped with over 100 physical sensors, 19 degrees of freedom, and 8 on board computers. We investigate the following topics in depth: distributed control of a complex robot, insect-inspired locomotion control for gait generation and rough terrain mobility, and fault tolerance. The controller was implemented, debugged, and tested on Hannibal. Through a series of experiments, we examined Hannibal's gait generation, rough terrain locomotion, and fault tolerance performance. These results demonstrate that Hannibal exhibits robust, flexible, real-time locomotion over a variety of terrain and tolerates a multitude of hardware failures.
Resumo:
This thesis examines a tactile sensor and a thermal sensor for use with the Utah-MIT dexterous four fingered hand. Sensory feedback is critical or full utilization of its advanced manipulatory capabilities. The hand itself provides tendon tensions and joint angles information. However, planned control algorithms require more information than these sources can provide. The tactile sensor utilizes capacitive transduction with a novel design based entirely on silicone elastomers. It provides an 8 x 8 array of force cells with 1.9 mm center-to-center spacing. A pressure resolution of 8 significant bits is available over a 0 to 200 grams per square mm range. The thermal sensor measures a material's heat conductivity by radiating heat into an object and measuring the resulting temperature variations. This sensor has a 4 x 4 array of temperature cells with 3.5 mm center-to-center spacing. Experiments show that the thermal sensor can discriminate among material by detecting differences in their thermal conduction properties. Both sensors meet the stringent mounting requirements posed by the Utah-MIT hand. Combining them together to form a sensor with both tactile and thermal capabilities will ultimately be possible. The computational requirements for controlling a sensor equipped dexterous hand are severe. Conventional single processor computers do not provide adequate performance. To overcome these difficulties, a computational architecture based on interconnecting high performance microcomputers and a set of software primitives tailored for sensor driven control has been proposed. The system has been implemented and tested on the Utah-MIT hand. The hand, equipped with tactile and thermal sensors and controlled by its computational architecture, is one of the most advanced robotic manipulatory devices available worldwide. Other ongoing projects will exploit these tools and allow the hand to perform tasks that exceed the capabilities of current generation robots.
Resumo:
Redundant sensors are needed on a mobile robot so that the accuracy with which it perceives its surroundings can be increased. Sonar and infrared sensors are used here in tandem, each compensating for deficiencies in the other. The robot combines the data from both sensors to build a representation which is more accurate than if either sensor were used alone. Another representation, the curvature primal sketch, is extracted from this perceived workspace and is used as the input to two path planning programs: one based on configuration space and one based on a generalized cone formulation of free space.