3 resultados para Repairing
em Massachusetts Institute of Technology
Resumo:
Explanation-based learning occurs when something useful is retained from an explanation, usually an account of how some particular problem can be solved given a sound theory. Many real-world explanations are not based on sound theory, however, and wrong things may be learned accidentally, as subsequent failures will likely demonstrate. In this paper, we describe ways to isolate the facts that cause failures, ways to explain why those facts cause problems, and ways to repair learning mistakes. In particular, our program learns to distinguish pails from cups after making a few mistakes.
Resumo:
Software bugs are violated specifications. Debugging is the process that culminates in repairing a program so that it satisfies its specification. An important part of debugging is localization, whereby the smallest region of the program that manifests the bug is found. The Debugging Assistant (DEBUSSI) localizes bugs by reasoning about logical dependencies. DEBUSSI manipulates the assumptions that underlie a bug manifestation, eventually localizing the bug to one particular assumption. At the same time, DEBUSSI acquires specification information, thereby extending its understanding of the buggy program. The techniques used for debugging fully implemented code are also appropriate for validating partial designs.
Resumo:
What are the characteristics of the process by which an intent is transformed into a plan and then a program? How is a program debugged? This paper analyzes these questions in the context of understanding simple turtle programs. To understand and debug a program, a description of its intent is required. For turtle programs, this is a model of the desired geometric picture. a picture language is provided for this purpose. Annotation is necessary for documenting the performance of a program in such a way that the system can examine the procedures behavior as well as consider hypothetical lines of development due to tentative debugging edits. A descriptive framework representing both causality and teleology is developed. To understand the relation between program and model, the plan must be known. The plan is a description of the methodology for accomplishing the model. Concepts are explicated for translating the global intent of a declarative model into the local imperative code of a program. Given the plan, model and program, the system can interpret the picture and recognize inconsistencies. The description of the discrepancies between the picture actually produced by the program and the intended scene is the input to a debugging system. Repair of the program is based on a combination of general debugging techniques and specific fixing knowledge associated with the geometric model primitives. In both the plan and repairing the bugs, the system exhibits an interesting style of analysis. It is capable of debugging itself and reformulating its analysis of a plan or bug in response to self-criticism. In this fashion, it can qualitatively reformulate its theory of the program or error to account for surprises or anomalies.