1 resultado para Renal system: function
em Massachusetts Institute of Technology
Filtro por publicador
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Abertay Research Collections - Abertay University’s repository (1)
- Aberystwyth University Repository - Reino Unido (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- Aquatic Commons (3)
- Archive of European Integration (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (6)
- Aston University Research Archive (9)
- B-Digital - Universidade Fernando Pessoa - Portugal (1)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (11)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (31)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (7)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (40)
- Boston University Digital Common (2)
- Brock University, Canada (7)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- CaltechTHESIS (10)
- Cambridge University Engineering Department Publications Database (19)
- CentAUR: Central Archive University of Reading - UK (55)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (47)
- Cochin University of Science & Technology (CUSAT), India (10)
- CORA - Cork Open Research Archive - University College Cork - Ireland (8)
- Dalarna University College Electronic Archive (6)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (2)
- Digital Commons - Montana Tech (3)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (5)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- Duke University (18)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Greenwich Academic Literature Archive - UK (1)
- Helda - Digital Repository of University of Helsinki (27)
- Indian Institute of Science - Bangalore - Índia (93)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico do Porto, Portugal (6)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (2)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Massachusetts Institute of Technology (1)
- National Center for Biotechnology Information - NCBI (4)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (6)
- QSpace: Queen's University - Canada (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (92)
- Queensland University of Technology - ePrints Archive (83)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (130)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (4)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- Universidad del Rosario, Colombia (14)
- Universidad Politécnica de Madrid (2)
- Universidade de Lisboa - Repositório Aberto (5)
- Universidade dos Açores - Portugal (1)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (1)
- Universidade Federal de Uberlândia (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (5)
- Universita di Parma (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (5)
- Université de Lausanne, Switzerland (17)
- Université de Montréal, Canada (16)
- University of Michigan (1)
- University of Queensland eSpace - Australia (35)
- University of Washington (2)
Resumo:
The Support Vector (SV) machine is a novel type of learning machine, based on statistical learning theory, which contains polynomial classifiers, neural networks, and radial basis function (RBF) networks as special cases. In the RBF case, the SV algorithm automatically determines centers, weights and threshold such as to minimize an upper bound on the expected test error. The present study is devoted to an experimental comparison of these machines with a classical approach, where the centers are determined by $k$--means clustering and the weights are found using error backpropagation. We consider three machines, namely a classical RBF machine, an SV machine with Gaussian kernel, and a hybrid system with the centers determined by the SV method and the weights trained by error backpropagation. Our results show that on the US postal service database of handwritten digits, the SV machine achieves the highest test accuracy, followed by the hybrid approach. The SV approach is thus not only theoretically well--founded, but also superior in a practical application.