1 resultado para Reductions
em Massachusetts Institute of Technology
Filtro por publicador
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Aberdeen University (1)
- Abertay Research Collections - Abertay University’s repository (2)
- Aberystwyth University Repository - Reino Unido (6)
- Academic Research Repository at Institute of Developing Economies (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- Adam Mickiewicz University Repository (1)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (1)
- Aquatic Commons (32)
- Archive of European Integration (20)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (8)
- Aston University Research Archive (8)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (3)
- B-Digital - Universidade Fernando Pessoa - Portugal (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (1)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (22)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (6)
- Boston University Digital Common (4)
- Brock University, Canada (20)
- CaltechTHESIS (9)
- Cambridge University Engineering Department Publications Database (34)
- CentAUR: Central Archive University of Reading - UK (84)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (23)
- Cochin University of Science & Technology (CUSAT), India (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (15)
- Digital Commons at Florida International University (2)
- DRUM (Digital Repository at the University of Maryland) (4)
- Duke University (15)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (54)
- Greenwich Academic Literature Archive - UK (7)
- Helda - Digital Repository of University of Helsinki (19)
- Indian Institute of Science - Bangalore - Índia (42)
- Instituto Politécnico do Porto, Portugal (4)
- Massachusetts Institute of Technology (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (13)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (153)
- Queensland University of Technology - ePrints Archive (250)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (4)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (5)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (10)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (3)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Universidad del Rosario, Colombia (13)
- Universidad Politécnica de Madrid (2)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade dos Açores - Portugal (1)
- Universitat de Girona, Spain (6)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (11)
- Université de Lausanne, Switzerland (3)
- Université de Montréal, Canada (19)
- University of Michigan (13)
- WestminsterResearch - UK (5)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
This thesis investigates a new approach to lattice basis reduction suggested by M. Seysen. Seysen's algorithm attempts to globally reduce a lattice basis, whereas the Lenstra, Lenstra, Lovasz (LLL) family of reduction algorithms concentrates on local reductions. We show that Seysen's algorithm is well suited for reducing certain classes of lattice bases, and often requires much less time in practice than the LLL algorithm. We also demonstrate how Seysen's algorithm for basis reduction may be applied to subset sum problems. Seysen's technique, used in combination with the LLL algorithm, and other heuristics, enables us to solve a much larger class of subset sum problems than was previously possible.