3 resultados para Recurrent abortion
em Massachusetts Institute of Technology
Resumo:
This report explores how recurrent neural networks can be exploited for learning high-dimensional mappings. Since recurrent networks are as powerful as Turing machines, an interesting question is how recurrent networks can be used to simplify the problem of learning from examples. The main problem with learning high-dimensional functions is the curse of dimensionality which roughly states that the number of examples needed to learn a function increases exponentially with input dimension. This thesis proposes a way of avoiding this problem by using a recurrent network to decompose a high-dimensional function into many lower dimensional functions connected in a feedback loop.
Resumo:
Different theoretical models have tried to investigate the feasibility of recurrent neural mechanisms for achieving direction selectivity in the visual cortex. The mathematical analysis of such models has been restricted so far to the case of purely linear networks. We present an exact analytical solution of the nonlinear dynamics of a class of direction selective recurrent neural models with threshold nonlinearity. Our mathematical analysis shows that such networks have form-stable stimulus-locked traveling pulse solutions that are appropriate for modeling the responses of direction selective cortical neurons. Our analysis shows also that the stability of such solutions can break down giving raise to a different class of solutions ("lurching activity waves") that are characterized by a specific spatio-temporal periodicity. These solutions cannot arise in models for direction selectivity with purely linear spatio-temporal filtering.
Resumo:
The problem of minimizing a multivariate function is recurrent in many disciplines as Physics, Mathematics, Engeneering and, of course, Computer Science. In this paper we describe a simple nondeterministic algorithm which is based on the idea of adaptive noise, and that proved to be particularly effective in the minimization of a class of multivariate, continuous valued, smooth functions, associated with some recent extension of regularization theory by Poggio and Girosi (1990). Results obtained by using this method and a more traditional gradient descent technique are also compared.