8 resultados para Reasoning about variation and distribution
em Massachusetts Institute of Technology
Resumo:
Reasoning about motion is an important part of our commonsense knowledge, involving fluent spatial reasoning. This work studies the qualitative and geometric knowledge required to reason in a world that consists of balls moving through space constrained by collisions with surfaces, including dissipative forces and multiple moving objects. An analog geometry representation serves the program as a diagram, allowing many spatial questions to be answered by numeric calculation. It also provides the foundation for the construction and use of place vocabulary, the symbolic descriptions of space required to do qualitative reasoning about motion in the domain. The actual motion of a ball is described as a network consisting of descriptions of qualitatively distinct types of motion. Implementing the elements of these networks in a constraint language allows the same elements to be used for both analysis and simulation of motion. A qualitative description of the actual motion is also used to check the consistency of assumptions about motion. A process of qualitative simulation is used to describe the kinds of motion possible from some state. The ambiguity inherent in such a description can be reduced by assumptions about physical properties of the ball or assumptions about its motion. Each assumption directly rules out some kinds of motion, but other knowledge is required to determine the indirect consequences of making these assumptions. Some of this knowledge is domain dependent and relies heavily on spatial descriptions.
Resumo:
Geologic interpretation is the task of inferring a sequence of events to explain how a given geologic region could have been formed. This report describes the design and implementation of one part of a geologic interpretation problem solver -- a system which uses a simulation technique called imagining to check the validity of a candidate sequence of events. Imagining uses a combination of qualitative and quantitative simulations to reason about the changes which occured to the geologic region. The spatial changes which occur are simulated by constructing a sequence of diagrams. The quantitative simulation needs numeric parameters which are determined by using the qualitative simulation to establish the cumulative changes to an object and by using a description of the current geologic region to make quantitative measurements. The diversity of reasoning skills used in imagining has necessitated the development of multiple representations, each specialized for a different task. Representations to facilitate doing temporal, spatial and numeric reasoning are described in detail. We have also found it useful to explicitly represent processes. Both the qualitative and quantitative simulations use a discrete 'layer cake' model of geologic processes, but each uses a separate representation, specialized to support the type of simulation. These multiple representations have enabled us to develop a powerful, yet modular, system for reasoning about change.
Resumo:
The underlying assumptions for interpreting the meaning of data often change over time, which further complicates the problem of semantic heterogeneities among autonomous data sources. As an extension to the COntext INterchange (COIN) framework, this paper introduces the notion of temporal context as a formalization of the problem. We represent temporal context as a multi-valued method in F-Logic; however, only one value is valid at any point in time, the determination of which is constrained by temporal relations. This representation is then mapped to an abductive constraint logic programming framework with temporal relations being treated as constraints. A mediation engine that implements the framework automatically detects and reconciles semantic differences at different times. We articulate that this extended COIN framework is suitable for reasoning on the Semantic Web.
Resumo:
The underlying assumptions for interpreting the meaning of data often change over time, which further complicates the problem of semantic heterogeneities among autonomous data sources. As an extension to the COntext INterchange (COIN) framework, this paper introduces the notion of temporal context as a formalization of the problem. We represent temporal context as a multi-valued method in F-Logic; however, only one value is valid at any point in time, the determination of which is constrained by temporal relations. This representation is then mapped to an abductive constraint logic programming framework with temporal relations being treated as constraints. A mediation engine that implements the framework automatically detects and reconciles semantic differences at different times. We articulate that this extended COIN framework is suitable for reasoning on the Semantic Web.
Resumo:
The underlying assumptions for interpreting the meaning of data often change over time, which further complicates the problem of semantic heterogeneities among autonomous data sources. As an extension to the COntext INterchange (COIN) framework, this paper introduces the notion of temporal context as a formalization of the problem. We represent temporal context as a multi-valued method in F-Logic; however, only one value is valid at any point in time, the determination of which is constrained by temporal relations. This representation is then mapped to an abductive constraint logic programming framework with temporal relations being treated as constraints. A mediation engine that implements the framework automatically detects and reconciles semantic differences at different times. We articulate that this extended COIN framework is suitable for reasoning on the Semantic Web.
Resumo:
The underlying assumptions for interpreting the meaning of data often change over time, which further complicates the problem of semantic heterogeneities among autonomous data sources. As an extension to the COntext INterchange (COIN) framework, this paper introduces the notion of temporal context as a formalization of the problem. We represent temporal context as a multi-valued method in F-Logic; however, only one value is valid at any point in time, the determination of which is constrained by temporal relations. This representation is then mapped to an abductive constraint logic programming framework with temporal relations being treated as constraints. A mediation engine that implements the framework automatically detects and reconciles semantic differences at different times. We articulate that this extended COIN framework is suitable for reasoning on the Semantic Web.
Resumo:
How can we insure that knowledge embedded in a program is applied effectively? Traditionally the answer to this question has been sought in different problem solving paradigms and in different approaches to encoding and indexing knowledge. Each of these is useful with a certain variety of problem, but they all share a common problem: they become ineffective in the face of a sufficiently large knowledge base. How then can we make it possible for a system to continue to function in the face of a very large number of plausibly useful chunks of knowledge? In response to this question we propose a framework for viewing issues of knowledge indexing and retrieval, a framework that includes what appears to be a useful perspective on the concept of a strategy. We view strategies as a means of controlling invocation in situations where traditional selection mechanisms become ineffective. We examine ways to effect such control, and describe meta-rules, a means of specifying strategies which offers a number of advantages. We consider at some length how and when it is useful to reason about control, and explore the advantages meta-rules offer for doing this.
Resumo:
In recent years, researchers in artificial intelligence have become interested in replicating human physical reasoning talents in computers. One of the most important skills in this area is predicting how physical systems will behave. This thesis discusses an implemented program that generates algebraic descriptions of how systems of rigid bodies evolve over time. Discussion about the design of this program identifies a physical reasoning paradigm and knowledge representation approach based on mathematical model construction and algebraic reasoning. This paradigm offers several advantages over methods that have become popular in the field, and seems promising for reasoning about a wide variety of classical mechanics problems.