2 resultados para Ravizza, Giovita, 1476-1553

em Massachusetts Institute of Technology


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Binocular rivalry refers to the alternating perceptions experienced when two dissimilar patterns are stereoscopically viewed. To study the neural mechanism that underlies such competitive interactions, single cells were recorded in the visual areas V1, V2, and V4, while monkeys reported the perceived orientation of rivaling sinusoidal grating patterns. A number of neurons in all areas showed alternating periods of excitation and inhibition that correlated with the perceptual dominance and suppression of the cell"s preferred orientation. The remaining population of cells were not influenced by whether or not the optimal stimulus orientation was perceptually suppressed. Response modulation during rivalry was not correlated with cell attributes such as monocularity, binocularity, or disparity tuning. These results suggest that the awareness of a visual pattern during binocular rivalry arises through interactions between neurons at different levels of visual pathways, and that the site of suppression is unlikely to correspond to a particular visual area, as often hypothesized on the basis of psychophysical observations. The cell-types of modulating neurons and their overwhelming preponderance in higher rather than in early visual areas also suggests -- together with earlier psychophysical evidence -- the possibility of a common mechanism underlying rivalry as well as other bistable percepts, such as those experienced with ambiguous figures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Building robust recognition systems requires a careful understanding of the effects of error in sensed features. Error in these image features results in a region of uncertainty in the possible image location of each additional model feature. We present an accurate, analytic approximation for this uncertainty region when model poses are based on matching three image and model points, for both Gaussian and bounded error in the detection of image points, and for both scaled-orthographic and perspective projection models. This result applies to objects that are fully three- dimensional, where past results considered only two-dimensional objects. Further, we introduce a linear programming algorithm to compute the uncertainty region when poses are based on any number of initial matches. Finally, we use these results to extend, from two-dimensional to three- dimensional objects, robust implementations of alignmentt interpretation- tree search, and ransformation clustering.