2 resultados para RNA Dynamic Structure
em Massachusetts Institute of Technology
Resumo:
Computational theories of action have generally understood the organized nature of human activity through the construction and execution of plans. By consigning the phenomena of contingency and improvisation to peripheral roles, this view has led to impractical technical proposals. As an alternative, I suggest that contingency is a central feature of everyday activity and that improvisation is the central kind of human activity. I also offer a computational model of certain aspects of everyday routine activity based on an account of improvised activity called running arguments and an account of representation for situated agents called deictic representation .
Resumo:
The objects with which the hand interacts with may significantly change the dynamics of the arm. How does the brain adapt control of arm movements to this new dynamic? We show that adaptation is via composition of a model of the task's dynamics. By exploring generalization capabilities of this adaptation we infer some of the properties of the computational elements with which the brain formed this model: the elements have broad receptive fields and encode the learned dynamics as a map structured in an intrinsic coordinate system closely related to the geometry of the skeletomusculature. The low--level nature of these elements suggests that they may represent asset of primitives with which a movement is represented in the CNS.