2 resultados para RESIDUALS
em Massachusetts Institute of Technology
Resumo:
Template matching by means of cross-correlation is common practice in pattern recognition. However, its sensitivity to deformations of the pattern and the broad and unsharp peaks it produces are significant drawbacks. This paper reviews some results on how these shortcomings can be removed. Several techniques (Matched Spatial Filters, Synthetic Discriminant Functions, Principal Components Projections and Reconstruction Residuals) are reviewed and compared on a common task: locating eyes in a database of faces. New variants are also proposed and compared: least squares Discriminant Functions and the combined use of projections on eigenfunctions and the corresponding reconstruction residuals. Finally, approximation networks are introduced in an attempt to improve filter design by the introduction of nonlinearity.
Resumo:
There is a natural norm associated with a starting point of the homogeneous self-dual (HSD) embedding model for conic convex optimization. In this norm two measures of the HSD model’s behavior are precisely controlled independent of the problem instance: (i) the sizes of ε-optimal solutions, and (ii) the maximum distance of ε-optimal solutions to the boundary of the cone of the HSD variables. This norm is also useful in developing a stopping-rule theory for HSD-based interior-point methods such as SeDuMi. Under mild assumptions, we show that a standard stopping rule implicitly involves the sum of the sizes of the ε-optimal primal and dual solutions, as well as the size of the initial primal and dual infeasibility residuals. This theory suggests possible criteria for developing starting points for the homogeneous self-dual model that might improve the resulting solution time in practice