2 resultados para RBF Network Symmetry
em Massachusetts Institute of Technology
Resumo:
Poggio and Vetter (1992) showed that learning one view of a bilaterally symmetric object could be sufficient for its recognition, if this view allows the computation of a symmetric, "virtual," view. Faces are roughly bilaterally symmetric objects. Learning a side-view--which always has a symmetric view--should allow for better generalization performances than learning the frontal view. Two psychophysical experiments tested these predictions. Stimuli were views of shaded 3D models of laser-scanned faces. The first experiment tested whether a particular view of a face was canonical. The second experiment tested which single views of a face give rise to best generalization performances. The results were compatible with the symmetry hypothesis: Learning a side view allowed better generalization performances than learning the frontal view.
Resumo:
Many 3D objects in the world around us are strongly constrained. For instance, not only cultural artifacts but also many natural objects are bilaterally symmetric. Thoretical arguments suggest and psychophysical experiments confirm that humans may be better in the recognition of symmetric objects. The hypothesis of symmetry-induced virtual views together with a network model that successfully accounts for human recognition of generic 3D objects leads to predictions that we have verified with psychophysical experiments.