2 resultados para Quantitative trait locus (QTL)
em Massachusetts Institute of Technology
Resumo:
This paper presents the ideas underlying a program that takes as input a schematic of a mechanical or hydraulic power transmission system, plus specifications and a utility function, and returns catalog numbers from predefined catalogs for the optimal selection of components implementing the design. It thus provides the designer with a high level "language" in which to compose new designs, then performs some of the detailed design process for him. The program is based on a formalization of quantitative inferences about hierarchically organized sets of artifacts and operating conditions, which allows design compilation without the exhaustive enumeration of alternatives.
Resumo:
This thesis investigates what knowledge is necessary to solve mechanics problems. A program NEWTON is described which understands and solves problems in mechanics mini-world of objects moving on surfaces. Facts and equations such as those given in mechanics text need to be represented. However, this is far from sufficient to solve problems. Human problem solvers rely on "common sense" and "qualitative" knowledge which the physics text tacitly assumes to be present. A mechanics problem solver must embody such knowledge. Quantitative knowledge given by equations and more qualitative common sense knowledge are the major research points exposited in this thesis. The major issue in solving problems is planning. Planning involves tentatively outlining a possible path to the solution without actually solving the problem. Such a plan needs to be constructed and debugged in the process of solving the problem. Envisionment, or qualitative simulation of the event, plays a central role in this planning process.