3 resultados para Prosthesis coloring

em Massachusetts Institute of Technology


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Amorphous computing is the study of programming ultra-scale computing environments of smart sensors and actuators cite{white-paper}. The individual elements are identical, asynchronous, randomly placed, embedded and communicate locally via wireless broadcast. Aggregating the processors into groups is a useful paradigm for programming an amorphous computer because groups can be used for specialization, increased robustness, and efficient resource allocation. This paper presents a new algorithm, called the clubs algorithm, for efficiently aggregating processors into groups in an amorphous computer, in time proportional to the local density of processors. The clubs algorithm is well-suited to the unique characteristics of an amorphous computer. In addition, the algorithm derives two properties from the physical embedding of the amorphous computer: an upper bound on the number of groups formed and a constant upper bound on the density of groups. The clubs algorithm can also be extended to find the maximal independent set (MIS) and $Delta + 1$ vertex coloring in an amorphous computer in $O(log N)$ rounds, where $N$ is the total number of elements and $Delta$ is the maximum degree.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The utility of vision-based face tracking for dual pointing tasks is evaluated. We first describe a 3-D face tracking technique based on real-time parametric motion-stereo, which is non-invasive, robust, and self-initialized. The tracker provides a real-time estimate of a ?frontal face ray? whose intersection with the display surface plane is used as a second stream of input for scrolling or pointing, in paral-lel with hand input. We evaluated the performance of com-bined head/hand input on a box selection and coloring task: users selected boxes with one pointer and colors with a second pointer, or performed both tasks with a single pointer. We found that performance with head and one hand was intermediate between single hand performance and dual hand performance. Our results are consistent with previously reported dual hand conflict in symmetric pointing tasks, and suggest that a head-based input stream should be used for asymmetric control.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rapid judgments about the properties and spatial relations of objects are the crux of visually guided interaction with the world. Vision begins, however, with essentially pointwise representations of the scene, such as arrays of pixels or small edge fragments. For adequate time-performance in recognition, manipulation, navigation, and reasoning, the processes that extract meaningful entities from the pointwise representations must exploit parallelism. This report develops a framework for the fast extraction of scene entities, based on a simple, local model of parallel computation.sAn image chunk is a subset of an image that can act as a unit in the course of spatial analysis. A parallel preprocessing stage constructs a variety of simple chunks uniformly over the visual array. On the basis of these chunks, subsequent serial processes locate relevant scene components and assemble detailed descriptions of them rapidly. This thesis defines image chunks that facilitate the most potentially time-consuming operations of spatial analysis---boundary tracing, area coloring, and the selection of locations at which to apply detailed analysis. Fast parallel processes for computing these chunks from images, and chunk-based formulations of indexing, tracing, and coloring, are presented. These processes have been simulated and evaluated on the lisp machine and the connection machine.