5 resultados para Probability distribution functions
em Massachusetts Institute of Technology
Resumo:
Given n noisy observations g; of the same quantity f, it is common use to give an estimate of f by minimizing the function Eni=1(gi-f)2. From a statistical point of view this corresponds to computing the Maximum likelihood estimate, under the assumption of Gaussian noise. However, it is well known that this choice leads to results that are very sensitive to the presence of outliers in the data. For this reason it has been proposed to minimize the functions of the form Eni=1V(gi-f), where V is a function that increases less rapidly than the square. Several choices for V have been proposed and successfully used to obtain "robust" estimates. In this paper we show that, for a class of functions V, using these robust estimators corresponds to assuming that data are corrupted by Gaussian noise whose variance fluctuates according to some given probability distribution, that uniquely determines the shape of V.
Resumo:
In this thesis we study the general problem of reconstructing a function, defined on a finite lattice from a set of incomplete, noisy and/or ambiguous observations. The goal of this work is to demonstrate the generality and practical value of a probabilistic (in particular, Bayesian) approach to this problem, particularly in the context of Computer Vision. In this approach, the prior knowledge about the solution is expressed in the form of a Gibbsian probability distribution on the space of all possible functions, so that the reconstruction task is formulated as an estimation problem. Our main contributions are the following: (1) We introduce the use of specific error criteria for the design of the optimal Bayesian estimators for several classes of problems, and propose a general (Monte Carlo) procedure for approximating them. This new approach leads to a substantial improvement over the existing schemes, both regarding the quality of the results (particularly for low signal to noise ratios) and the computational efficiency. (2) We apply the Bayesian appraoch to the solution of several problems, some of which are formulated and solved in these terms for the first time. Specifically, these applications are: teh reconstruction of piecewise constant surfaces from sparse and noisy observationsl; the reconstruction of depth from stereoscopic pairs of images and the formation of perceptual clusters. (3) For each one of these applications, we develop fast, deterministic algorithms that approximate the optimal estimators, and illustrate their performance on both synthetic and real data. (4) We propose a new method, based on the analysis of the residual process, for estimating the parameters of the probabilistic models directly from the noisy observations. This scheme leads to an algorithm, which has no free parameters, for the restoration of piecewise uniform images. (5) We analyze the implementation of the algorithms that we develop in non-conventional hardware, such as massively parallel digital machines, and analog and hybrid networks.
Resumo:
We develop a mean field theory for sigmoid belief networks based on ideas from statistical mechanics. Our mean field theory provides a tractable approximation to the true probability distribution in these networks; it also yields a lower bound on the likelihood of evidence. We demonstrate the utility of this framework on a benchmark problem in statistical pattern recognition -- the classification of handwritten digits.
Resumo:
We present methods of calculating the value of two performance parameters for multipath, multistage interconnection networks: the normalized throughput and the probability of successful message transmission. We develop a set of exact equations for the loading probability mass functions of network channels and a program for solving them exactly. We also develop a Monte Carlo method for approxmiate solution of the equations, and show that the resulting approximation method will always calculate the values of the performance parameters more quickly than direct simulation.
Resumo:
We formulate density estimation as an inverse operator problem. We then use convergence results of empirical distribution functions to true distribution functions to develop an algorithm for multivariate density estimation. The algorithm is based upon a Support Vector Machine (SVM) approach to solving inverse operator problems. The algorithm is implemented and tested on simulated data from different distributions and different dimensionalities, gaussians and laplacians in $R^2$ and $R^{12}$. A comparison in performance is made with Gaussian Mixture Models (GMMs). Our algorithm does as well or better than the GMMs for the simulations tested and has the added advantage of being automated with respect to parameters.