1 resultado para Prior pooling
em Massachusetts Institute of Technology
Filtro por publicador
- Aberdeen University (2)
- Aberystwyth University Repository - Reino Unido (5)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- ANIMAL PRODUCTION JOURNAL (1)
- Aquatic Commons (4)
- Archive of European Integration (10)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (16)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (8)
- Biblioteca Digital Loyola - Universidad de Deusto (6)
- Biblioteca Valenciana Digital - Ministerio de Educación, Cultura y Deporte - Valencia - Espanha (6)
- Biodiversity Heritage Library, United States (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (49)
- Boston University Digital Common (1)
- Brock University, Canada (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (22)
- CentAUR: Central Archive University of Reading - UK (22)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (1)
- Cochin University of Science & Technology (CUSAT), India (2)
- Collection Of Biostatistics Research Archive (2)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (3)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- Digital Commons @ DU | University of Denver Research (2)
- Digital Commons @ Winthrop University (1)
- Digital Commons at Florida International University (2)
- Digital Peer Publishing (1)
- Digital Repository at Iowa State University (1)
- DigitalCommons@The Texas Medical Center (5)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (4)
- Duke University (3)
- Earth Simulator Research Results Repository (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (2)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (8)
- Harvard University (2)
- Helda - Digital Repository of University of Helsinki (1)
- Hospitais da Universidade de Coimbra (1)
- Indian Institute of Science - Bangalore - Índia (6)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (1)
- Instituto Superior de Psicologia Aplicada - Lisboa (1)
- Massachusetts Institute of Technology (1)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (3)
- Nottingham eTheses (4)
- Publishing Network for Geoscientific & Environmental Data (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (35)
- Queensland University of Technology - ePrints Archive (398)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositorio Institucional de la Universidad Pública de Navarra - Espanha (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (31)
- School of Medicine, Washington University, United States (1)
- The Scholarly Commons | School of Hotel Administration; Cornell University Research (1)
- Universidad Autónoma de Nuevo León, Mexico (3)
- Universidad de Alicante (1)
- Universidad Politécnica de Madrid (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (2)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (2)
- Université de Montréal, Canada (1)
- University of Connecticut - USA (1)
- University of Michigan (192)
- University of Queensland eSpace - Australia (12)
- WestminsterResearch - UK (1)
Resumo:
A common objective in learning a model from data is to recover its network structure, while the model parameters are of minor interest. For example, we may wish to recover regulatory networks from high-throughput data sources. In this paper we examine how Bayesian regularization using a Dirichlet prior over the model parameters affects the learned model structure in a domain with discrete variables. Surprisingly, a weak prior in the sense of smaller equivalent sample size leads to a strong regularization of the model structure (sparse graph) given a sufficiently large data set. In particular, the empty graph is obtained in the limit of a vanishing strength of prior belief. This is diametrically opposite to what one may expect in this limit, namely the complete graph from an (unregularized) maximum likelihood estimate. Since the prior affects the parameters as expected, the prior strength balances a "trade-off" between regularizing the parameters or the structure of the model. We demonstrate the benefits of optimizing this trade-off in the sense of predictive accuracy.