17 resultados para Primitive
em Massachusetts Institute of Technology
Resumo:
Type-omega DPLs (Denotational Proof Languages) are languages for proof presentation and search that offer strong soundness guarantees. LCF-type systems such as HOL offer similar guarantees, but their soundness relies heavily on static type systems. By contrast, DPLs ensure soundness dynamically, through their evaluation semantics; no type system is necessary. This is possible owing to a novel two-tier syntax that separates deductions from computations, and to the abstraction of assumption bases, which is factored into the semantics of the language and allows for sound evaluation. Every type-omega DPL properly contains a type-alpha DPL, which can be used to present proofs in a lucid and detailed form, exclusively in terms of primitive inference rules. Derived inference rules are expressed as user-defined methods, which are "proof recipes" that take arguments and dynamically perform appropriate deductions. Methods arise naturally via parametric abstraction over type-alpha proofs. In that light, the evaluation of a method call can be viewed as a computation that carries out a type-alpha deduction. The type-alpha proof "unwound" by such a method call is called the "certificate" of the call. Certificates can be checked by exceptionally simple type-alpha interpreters, and thus they are useful whenever we wish to minimize our trusted base. Methods are statically closed over lexical environments, but dynamically scoped over assumption bases. They can take other methods as arguments, they can iterate, and they can branch conditionally. These capabilities, in tandem with the bifurcated syntax of type-omega DPLs and their dynamic assumption-base semantics, allow the user to define methods in a style that is disciplined enough to ensure soundness yet fluid enough to permit succinct and perspicuous expression of arbitrarily sophisticated derived inference rules. We demonstrate every major feature of type-omega DPLs by defining and studying NDL-omega, a higher-order, lexically scoped, call-by-value type-omega DPL for classical zero-order natural deduction---a simple choice that allows us to focus on type-omega syntax and semantics rather than on the subtleties of the underlying logic. We start by illustrating how type-alpha DPLs naturally lead to type-omega DPLs by way of abstraction; present the formal syntax and semantics of NDL-omega; prove several results about it, including soundness; give numerous examples of methods; point out connections to the lambda-phi calculus, a very general framework for type-omega DPLs; introduce a notion of computational and deductive cost; define several instrumented interpreters for computing such costs and for generating certificates; explore the use of type-omega DPLs as general programming languages; show that DPLs do not have to be type-less by formulating a static Hindley-Milner polymorphic type system for NDL-omega; discuss some idiosyncrasies of type-omega DPLs such as the potential divergence of proof checking; and compare type-omega DPLs to other approaches to proof presentation and discovery. Finally, a complete implementation of NDL-omega in SML-NJ is given for users who want to run the examples and experiment with the language.
Resumo:
This paper explores the relationships between a computation theory of temporal representation (as developed by James Allen) and a formal linguistic theory of tense (as developed by Norbert Hornstein) and aspect. It aims to provide explicit answers to four fundamental questions: (1) what is the computational justification for the primitive of a linguistic theory; (2) what is the computational explanation of the formal grammatical constraints; (3) what are the processing constraints imposed on the learnability and markedness of these theoretical constructs; and (4) what are the constraints that a linguistic theory imposes on representations. We show that one can effectively exploit the interface between the language faculty and the cognitive faculties by using linguistic constraints to determine restrictions on the cognitive representation and vice versa. Three main results are obtained: (1) We derive an explanation of an observed grammatical constraint on tense?? Linear Order Constraint??m the information monotonicity property of the constraint propagation algorithm of Allen's temporal system: (2) We formulate a principle of markedness for the basic tense structures based on the computational efficiency of the temporal representations; and (3) We show Allen's interval-based temporal system is not arbitrary, but it can be used to explain independently motivated linguistic constraints on tense and aspect interpretations. We also claim that the methodology of research developed in this study??oss-level" investigation of independently motivated formal grammatical theory and computational models??a powerful paradigm with which to attack representational problems in basic cognitive domains, e.g., space, time, causality, etc.
Resumo:
This memo describes the initial results of a project to create a self-supervised algorithm for learning object segmentation from video data. Developmental psychology and computational experience have demonstrated that the motion segmentation of objects is a simpler, more primitive process than the detection of object boundaries by static image cues. Therefore, motion information provides a plausible supervision signal for learning the static boundary detection task and for evaluating performance on a test set. A video camera and previously developed background subtraction algorithms can automatically produce a large database of motion-segmented images for minimal cost. The purpose of this work is to use the information in such a database to learn how to detect the object boundaries in novel images using static information, such as color, texture, and shape. This work was funded in part by the Office of Naval Research contract #N00014-00-1-0298, in part by the Singapore-MIT Alliance agreement of 11/6/98, and in part by a National Science Foundation Graduate Student Fellowship.
Resumo:
In this report, I discuss the use of vision to support concrete, everyday activity. I will argue that a variety of interesting tasks can be solved using simple and inexpensive vision systems. I will provide a number of working examples in the form of a state-of-the-art mobile robot, Polly, which uses vision to give primitive tours of the seventh floor of the MIT AI Laboratory. By current standards, the robot has a broad behavioral repertoire and is both simple and inexpensive (the complete robot was built for less than $20,000 using commercial board-level components). The approach I will use will be to treat the structure of the agent's activity---its task and environment---as positive resources for the vision system designer. By performing a careful analysis of task and environment, the designer can determine a broad space of mechanisms which can perform the desired activity. My principal thesis is that for a broad range of activities, the space of applicable mechanisms will be broad enough to include a number mechanisms which are simple and economical. The simplest mechanisms that solve a given problem will typically be quite specialized to that problem. One thus worries that building simple vision systems will be require a great deal of {it ad-hoc} engineering that cannot be transferred to other problems. My second thesis is that specialized systems can be analyzed and understood in a principled manner, one that allows general lessons to be extracted from specialized systems. I will present a general approach to analyzing specialization through the use of transformations that provably improve performance. By demonstrating a sequence of transformations that derive a specialized system from a more general one, we can summarize the specialization of the former in a compact form that makes explicit the additional assumptions that it makes about its environment. The summary can be used to predict the performance of the system in novel environments. Individual transformations can be recycled in the design of future systems.
Resumo:
Information representation is a critical issue in machine vision. The representation strategy in the primitive stages of a vision system has enormous implications for the performance in subsequent stages. Existing feature extraction paradigms, like edge detection, provide sparse and unreliable representations of the image information. In this thesis, we propose a novel feature extraction paradigm. The features consist of salient, simple parts of regions bounded by zero-crossings. The features are dense, stable, and robust. The primary advantage of the features is that they have abstract geometric attributes pertaining to their size and shape. To demonstrate the utility of the feature extraction paradigm, we apply it to passive navigation. We argue that the paradigm is applicable to other early vision problems.
Resumo:
This thesis presents a new approach to building a design for testability (DFT) system. The system takes a digital circuit description, finds out the problems in testing it, and suggests circuit modifications to correct those problems. The key contributions of the thesis research are (1) setting design for testability in the context of test generation (TG), (2) using failures during FG to focus on testability problems, and (3) relating circuit modifications directly to the failures. A natural functionality set is used to represent the maximum functionalities that a component can have. The current implementation has only primitive domain knowledge and needs other work as well. However, armed with the knowledge of TG, it has already demonstrated its ability and produced some interesting results on a simple microprocessor.
Resumo:
I describe an approach to forming hypotheses about hidden mechanism configurations within devices given external observations and a vocabulary of primitive mechanisms. An implemented causal modelling system called JACK constructs explanations for why a second piece of toast comes out lighter, why the slide in a tire gauge does not slip back inside when the gauge is removed from the tire, and how in a refrigerator a single substance can serve as a heat sink for the interior and a heat source for the exterior. I report the number of hypotheses admitted for each device example, and provide empirical results which isolate the pruning power due to different constraint sources.
Resumo:
TYPICAL is a package for describing and making automatic inferences about a broad class of SCHEME predicate functions. These functions, called types following popular usage, delineate classes of primitive SCHEME objects, composite data structures, and abstract descriptions. TYPICAL types are generated by an extensible combinator language from either existing types or primitive terminals. These generated types are located in a lattice of predicate subsumption which captures necessary entailment between types; if satisfaction of one type necessarily entail satisfaction of another, the first type is below the second in the lattice. The inferences make by TYPICAL computes the position of the new definition within the lattice and establishes it there. This information is then accessible to both later inferences and other programs (reasoning systems, code analyzers, etc) which may need the information for their own purposes. TYPICAL was developed as a representation language for the discovery program Cyrano; particular examples are given of TYPICAL's application in the Cyrano program.
Resumo:
The primary goal of this research is to develop theoretical tools for analysis, synthesis, application of primitive manipulator operations. The primary method is to extend and apply traditional tools of classical mechanics. The results are of such a general nature that they address many different aspects of industrial robotics, including effector and sensor design, planning and programming tools and design of auxiliary equipment. Some of the manipulator operations studied are: (1) Grasping an object. The object will usually slide and rotate during the period between first contact and prehension. (2) Placing an object. The object may slip slightly in the fingers upon contact with the table as the base aligns with the table. (3) Pushing. Often the final stage of mating two parts involves pushing one object into the other.
Resumo:
We wish to design a diagnostic for a device from knowledge of its structure and function. the diagnostic should achieve both coverage of the faults that can occur in the device, and should strive to achieve specificity in its diagnosis when it detects a fault. A system is described that uses a simple model of hardware structure and function, representing the device in terms of its internal primitive functions and connections. The system designs a diagnostic in three steps. First, an extension of path sensitization is used to design a test for each of the connections in teh device. Next, the resulting tests are improved by increasing their specificity. Finally the tests are ordered so that each relies on the fewest possible connections. We describe an implementation of this system and show examples of the results for some simple devices.
Resumo:
This thesis describes a mechanical assembly system called LAMA (Language for Automatic Mechanical Assembly). The goal of the work was to create a mechanical assembly system that transforms a high-level description of an automatic assembly operation into a program or execution by a computer controlled manipulator. This system allows the initial description of the assembly to be in terms of the desired effects on the parts being assembled. Languages such as WAVE [Bolles & Paul] and MINI [Silver] fail to meet this goal by requiring the assembly operation to be described in terms of manipulator motions. This research concentrates on the spatial complexity of mechanical assembly operations. The assembly problem is seen as the problem of achieving a certain set of geometrical constraints between basic objects while avoiding unwanted collisions. The thesis explores how these two facets, desired constraints and unwanted collisions, affect the primitive operations of the domain.
Resumo:
This report presents a method for viewing complex programs as built up out of simpler ones. The central idea is that typical programs are built up in a small number of stereotyped ways. The method is designed to make it easier for an automatic system to work with programs. It focuses on how the primitive operations performed by a program are combined together in order to produce the actions of the program as a whole. It does not address the issue of how complex data structures are built up from simpler ones, nor the relationships between data structures and the operations performed on them.
Resumo:
This thesis explores how to represent image texture in order to obtain information about the geometry and structure of surfaces, with particular emphasis on locating surface discontinuities. Theoretical and psychophysical results lead to the following conclusions for the representation of image texture: (1) A texture edge primitive is needed to identify texture change contours, which are formed by an abrupt change in the 2-D organization of similar items in an image. The texture edge can be used for locating discontinuities in surface structure and surface geometry and for establishing motion correspondence. (2) Abrupt changes in attributes that vary with changing surface geometry ??ientation, density, length, and width ??ould be used to identify discontinuities in surface geometry and surface structure. (3) Texture tokens are needed to separate the effects of different physical processes operating on a surface. They represent the local structure of the image texture. Their spatial variation can be used in the detection of texture discontinuities and texture gradients, and their temporal variation may be used for establishing motion correspondence. What precisely constitutes the texture tokens is unknown; it appears, however, that the intensity changes alone will not suffice, but local groupings of them may. (4) The above primitives need to be assigned rapidly over a large range in an image.
Resumo:
A prototype presentation system base is described. It offers mechanisms, tools, and ready-made parts for building user interfaces. A general user interface model underlies the base, organized around the concept of a presentation: a visible text or graphic for conveying information. Te base and model emphasize domain independence and style independence, to apply to the widest possible range of interfaces. The primitive presentation system model treats the interface as a system of processes maintaining a semantic relation between an application data base and a presentation data base, the symbolic screen description containing presentations. A presenter continually updates the presentation data base from the application data base. The user manipulates presentations with a presentation editor. A recognizer translates the user's presentation manipulation into application data base commands. The primitive presentation system can be extended to model more complex systems by attaching additional presentation systems. In order to illustrate the model's generality and descriptive capabilities, extended model structures for several existing user interfaces are discussed. The base provides support for building the application and presentation data bases, linked together into a single, uniform network, including descriptions of classes of objects as we as the objects themselves. The base provides an initial presentation data base network graphics to continually display it, and editing functions. A variety of tools and mechanisms help create and control presenters and recognizers. To demonstrate the base's utility, three interfaces to an operating system were constructed, embodying different styles: icons, menu, and graphical annotation.
Resumo:
Babies are born with simple manipulation capabilities such as reflexes to perceived stimuli. Initial discoveries by babies are accidental until they become coordinated and curious enough to actively investigate their surroundings. This thesis explores the development of such primitive learning systems using an embodied light-weight hand with three fingers and a thumb. It is self-contained having four motors and 36 exteroceptor and proprioceptor sensors controlled by an on-palm microcontroller. Primitive manipulation is learned from sensory inputs using competitive learning, back-propagation algorithm and reinforcement learning strategies. This hand will be used for a humanoid being developed at the MIT Artificial Intelligence Laboratory.