3 resultados para Priestley-Taylor formulation

em Massachusetts Institute of Technology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Classical mechanics is deceptively simple. It is surprisingly easy to get the right answer with fallacious reasoning or without real understanding. To address this problem we use computational techniques to communicate a deeper understanding of Classical Mechanics. Computational algorithms are used to express the methods used in the analysis of dynamical phenomena. Expressing the methods in a computer language forces them to be unambiguous and computationally effective. The task of formulating a method as a computer-executable program and debugging that program is a powerful exercise in the learning process. Also, once formalized procedurally, a mathematical idea becomes a tool that can be used directly to compute results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss a formulation for active example selection for function learning problems. This formulation is obtained by adapting Fedorov's optimal experiment design to the learning problem. We specifically show how to analytically derive example selection algorithms for certain well defined function classes. We then explore the behavior and sample complexity of such active learning algorithms. Finally, we view object detection as a special case of function learning and show how our formulation reduces to a useful heuristic to choose examples to reduce the generalization error.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an experimental study on the behavior of bubbles captured in a Taylor vortex. The gap between a rotating inner cylinder and a stationary outer cylinder is filled with a Newtonian mineral oil. Beyond a critical rotation speed (ω[subscript c]), Taylor vortices appear in this system. Small air bubbles are introduced into the gap through a needle connected to a syringe pump. These are then captured in the cores of the vortices (core bubble) and in the outflow regions along the inner cylinder (wall bubble). The flow field is measured with a two-dimensional particle imaging velocimetry (PIV) system. The motion of the bubbles is monitored by using a high speed video camera. It has been found that, if the core bubbles are all of the same size, a bubble ring forms at the center of the vortex such that bubbles are azimuthally uniformly distributed. There is a saturation number (N[subscript s]) of bubbles in the ring, such that the addition of one more bubble leads eventually to a coalescence and a subsequent complicated evolution. Ns increases with increasing rotation speed and decreasing bubble size. For bubbles of non-uniform size, small bubbles and large bubbles in nearly the same orbit can be observed to cross due to their different circulating speeds. The wall bubbles, however, do not become uniformly distributed, but instead form short bubble-chains which might eventually evolve into large bubbles. The motion of droplets and particles in a Taylor vortex was also investigated. As with bubbles, droplets and particles align into a ring structure at low rotation speeds, but the saturation number is much smaller. Moreover, at high rotation speeds, droplets and particles exhibit a characteristic periodic oscillation in the axial, radial and tangential directions due to their inertia. In addition, experiments with non-spherical particles show that they behave rather similarly. This study provides a better understanding of particulate behavior in vortex flow structures.