7 resultados para Predicate encryption
em Massachusetts Institute of Technology
Resumo:
I have added support for predicate dispatching, a powerful generalization of other dispatching mechanisms, to the Common Lisp Object System (CLOS). To demonstrate its utility, I used predicate dispatching to enhance Weyl, a computer algebra system which doubles as a CLOS library. My result is Dispatching-Enhanced Weyl (DEW), a computer algebra system that I have demonstrated to be well suited for both users and programmers.
Resumo:
Most knowledge representation languages are based on classes and taxonomic relationships between classes. Taxonomic hierarchies without defaults or exceptions are semantically equivalent to a collection of formulas in first order predicate calculus. Although designers of knowledge representation languages often express an intuitive feeling that there must be some advantage to representing facts as taxonomic relationships rather than first order formulas, there are few, if any, technical results supporting this intuition. We attempt to remedy this situation by presenting a taxonomic syntax for first order predicate calculus and a series of theorems that support the claim that taxonomic syntax is superior to classical syntax.
Resumo:
This research is concerned with designing representations for analytical reasoning problems (of the sort found on the GRE and LSAT). These problems test the ability to draw logical conclusions. A computer program was developed that takes as input a straightforward predicate calculus translation of a problem, requests additional information if necessary, decides what to represent and how, designs representations capturing the constraints of the problem, and creates and executes a LISP program that uses those representations to produce a solution. Even though these problems are typically difficult for theorem provers to solve, the LISP program that uses the designed representations is very efficient.
Resumo:
TYPICAL is a package for describing and making automatic inferences about a broad class of SCHEME predicate functions. These functions, called types following popular usage, delineate classes of primitive SCHEME objects, composite data structures, and abstract descriptions. TYPICAL types are generated by an extensible combinator language from either existing types or primitive terminals. These generated types are located in a lattice of predicate subsumption which captures necessary entailment between types; if satisfaction of one type necessarily entail satisfaction of another, the first type is below the second in the lattice. The inferences make by TYPICAL computes the position of the new definition within the lattice and establishes it there. This information is then accessible to both later inferences and other programs (reasoning systems, code analyzers, etc) which may need the information for their own purposes. TYPICAL was developed as a representation language for the discovery program Cyrano; particular examples are given of TYPICAL's application in the Cyrano program.
Resumo:
This work describes a program, called TOPLE, which uses a procedural model of the world to understand simple declarative sentences. It accepts sentences in a modified predicate calculus symbolism, and uses plausible reasoning to visualize scenes, resolve ambiguous pronoun and noun phrase references, explain events, and make conditional predications. Because it does plausible deduction, with tentative conclusions, it must contain a formalism for describing its reasons for its conclusions and what the alternatives are. When an inconsistency is detected in its world model, it uses its recorded information to resolve it, one way or another. It uses simulation techniques to make deductions about creatures motivation and behavior, assuming they are goal-directed beings like itself.
Resumo:
SIR is a computer system, programmed in the LISP language, which accepts information and answers questions expressed in a restricted form of English. This system demonstrates what can reasonably be called an ability to "understand" semantic information. SIR's semantic and deductive ability is based on the construction of an internal model, which uses word associations and property lists, for the relational information normally conveyed in conversational statements. A format-matching procedure extracts semantic content from English sentences. If an input sentence is declarative, the system adds appropriate information to the model. If an input sentence is a question, the system searches the model until it either finds the answer or determines why it cannot find the answer. In all cases SIR reports its conclusions. The system has some capacity to recognize exceptions to general rules, resolve certain semantic ambiguities, and modify its model structure in order to save computer memory space. Judging from its conversational ability, SIR, is a first step toward intelligent man-machine communication. The author proposes a next step by describing how to construct a more general system which is less complex and yet more powerful than SIR. This proposed system contains a generalized version of the SIR model, a formal logical system called SIR1, and a computer program for testing the truth of SIR1 statements with respect to the generalized model by using partial proof procedures in the predicate calculus. The thesis also describes the formal properties of SIR1 and how they relate to the logical structure of SIR.
Resumo:
How can one represent the meaning of English sentences in a formal logical notation such that the translation of English into this logical form is simple and general? This report answers this question for a particular kind of meaning, namely quantifier scope, and for a particular part of the translation, namely the syntactic influence on the translation. Rules are presented which predict, for example, that the sentence: Everyone in this room speaks at least two languages. has the quantifier scope AE in standard predicate calculus, while the sentence: At lease two languages are spoken by everyone in this room. has the quantifier scope EA. Three different logical forms are presented, and their translation rules are examined. One of the logical forms is predicate calculus. The translation rules for it were developed by Robert May (May 19 77). The other two logical forms are Skolem form and a simple computer programming language. The translation rules for these two logical forms are new. All three sets of translation rules are shown to be general, in the sense that the same rules express the constraints that syntax imposes on certain other linguistic phenomena. For example, the rules that constrain the translation into Skolem form are shown to constrain definite np anaphora as well. A large body of carefully collected data is presented, and used to assess the empirical accuracy of each of the theories. None of the three theories is vastly superior to the others. However, the report concludes by suggesting that a combination of the two newer theories would have the greatest generality and the highest empirical accuracy.