4 resultados para Polynomial Powers of Sigmoid

em Massachusetts Institute of Technology


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sigmoid type belief networks, a class of probabilistic neural networks, provide a natural framework for compactly representing probabilistic information in a variety of unsupervised and supervised learning problems. Often the parameters used in these networks need to be learned from examples. Unfortunately, estimating the parameters via exact probabilistic calculations (i.e, the EM-algorithm) is intractable even for networks with fairly small numbers of hidden units. We propose to avoid the infeasibility of the E step by bounding likelihoods instead of computing them exactly. We introduce extended and complementary representations for these networks and show that the estimation of the network parameters can be made fast (reduced to quadratic optimization) by performing the estimation in either of the alternative domains. The complementary networks can be used for continuous density estimation as well.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Impressive claims have been made for the performance of the SNoW algorithm on face detection tasks by Yang et. al. [7]. In particular, by looking at both their results and those of Heisele et. al. [3], one could infer that the SNoW system performed substantially better than an SVM-based system, even when the SVM used a polynomial kernel and the SNoW system used a particularly simplistic 'primitive' linear representation. We evaluated the two approaches in a controlled experiment, looking directly at performance on a simple, fixed-sized test set, isolating out 'infrastructure' issues related to detecting faces at various scales in large images. We found that SNoW performed about as well as linear SVMs, and substantially worse than polynomial SVMs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the most prominent industrial applications of heat transfer science and engineering has been electronics thermal control. Driven by the relentless increase in spatial density of microelectronic devices, integrated circuit chip powers have risen by a factor of 100 over the past twenty years, with a somewhat smaller increase in heat flux. The traditional approaches using natural convection and forced-air cooling are becoming less viable as power levels increase. This paper provides a high-level overview of the thermal management problem from the perspective of a practitioner, as well as speculation on the prospects for electronics thermal engineering in years to come.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the optimization problem of safety stock placement in a supply chain, as formulated in [1]. We prove that this problem is NP-Hard for supply chains modeled as general acyclic networks. Thus, we do not expect to find a polynomial-time algorithm for safety stock placement for a general-network supply chain.