15 resultados para Polynomial Invariants
em Massachusetts Institute of Technology
Resumo:
Structure from motion often refers to the computation of 3D structure from a matched sequence of images. However, a depth map of a surface is difficult to compute and may not be a good representation for storage and recognition. Given matched images, I will first show that the sign of the normal curvature in a given direction at a given point in the image can be computed from a simple difference of slopes of line-segments in one image. Using this result, local surface patches can be classified as convex, concave, parabolic (cylindrical), hyperbolic (saddle point) or planar. At the same time the translational component of the optical flow is obtained, from which the focus of expansion can be computed.
Resumo:
A study is made of the recognition and transformation of figures by iterative arrays of finite state automata. A figure is a finite rectangular two-dimensional array of symbols. The iterative arrays considered are also finite, rectangular, and two-dimensional. The automata comprising any given array are called cells and are assumed to be isomorphic and to operate synchronously with the state of a cell at time t+1 being a function of the states of it and its four nearest neighbors at time t. At time t=0 each cell is placed in one of a fixed number of initial states. The pattern of initial states thus introduced represents the figure to be processed. The resulting sequence of array states represents a computation based on the input figure. If one waits for a specially designated cell to indicate acceptance or rejection of the figure, the array is said to be working on a recognition problem. If one waits for the array to come to a stable configuration representing an output figure, the array is said to be working on a transformation problem.
Resumo:
We consider the problem of matching model and sensory data features in the presence of geometric uncertainty, for the purpose of object localization and identification. The problem is to construct sets of model feature and sensory data feature pairs that are geometrically consistent given that there is uncertainty in the geometry of the sensory data features. If there is no geometric uncertainty, polynomial-time algorithms are possible for feature matching, yet these approaches can fail when there is uncertainty in the geometry of data features. Existing matching and recognition techniques which account for the geometric uncertainty in features either cannot guarantee finding a correct solution, or can construct geometrically consistent sets of feature pairs yet have worst case exponential complexity in terms of the number of features. The major new contribution of this work is to demonstrate a polynomial-time algorithm for constructing sets of geometrically consistent feature pairs given uncertainty in the geometry of the data features. We show that under a certain model of geometric uncertainty the feature matching problem in the presence of uncertainty is of polynomial complexity. This has important theoretical implications by demonstrating an upper bound on the complexity of the matching problem, an by offering insight into the nature of the matching problem itself. These insights prove useful in the solution to the matching problem in higher dimensional cases as well, such as matching three-dimensional models to either two or three-dimensional sensory data. The approach is based on an analysis of the space of feasible transformation parameters. This paper outlines the mathematical basis for the method, and describes the implementation of an algorithm for the procedure. Experiments demonstrating the method are reported.
Resumo:
A procedure is given for recognizing sets of inference rules that generate polynomial time decidable inference relations. The procedure can automatically recognize the tractability of the inference rules underlying congruence closure. The recognition of tractability for that particular rule set constitutes mechanical verification of a theorem originally proved independently by Kozen and Shostak. The procedure is algorithmic, rather than heuristic, and the class of automatically recognizable tractable rule sets can be precisely characterized. A series of examples of rule sets whose tractability is non-trivial, yet machine recognizable, is also given. The technical framework developed here is viewed as a first step toward a general theory of tractable inference relations.
Resumo:
A polynomial time algorithm (pruned correspondence search, PCS) with good average case performance for solving a wide class of geometric maximal matching problems, including the problem of recognizing 3D objects from a single 2D image, is presented. Efficient verification algorithms, based on a linear representation of location constraints, are given for the case of affine transformations among vector spaces and for the case of rigid 2D and 3D transformations with scale. Some preliminary experiments suggest that PCS is a practical algorithm. Its similarity to existing correspondence based algorithms means that a number of existing techniques for speedup can be incorporated into PCS to improve its performance.
Resumo:
This paper describes a theory of inheritance theories. We present an original theory of inheritance in nonmonotonic hierarchies. The structures on which this theory is based delineate a framework that subsumes most inheritance theories in the literature, providing a new foundation for inheritance. * Our path-based theory is sound and complete w.r.t. a direct model-theoretic semantics. * Both the credulous and the skeptical conclusions of this theory are polynomial-time computable. * We prove that true skeptical inheritance is not contained in the language of path-based inheritance. Because our techniques are modular w.r.t. the definition of specificity, they generalize to provide a unified framework for a broad class of inheritance theories. By describing multiple inheritance theories in the same "language" of credulous extensions, we make principled comparisons rather than the ad-hoc examination of specific examples makes up most of the comparative inheritance work.
Resumo:
In the general case, a trilinear relationship between three perspective views is shown to exist. The trilinearity result is shown to be of much practical use in visual recognition by alignment --- yielding a direct method that cuts through the computations of camera transformation, scene structure and epipolar geometry. The proof of the central result may be of further interest as it demonstrates certain regularities across homographies of the plane and introduces new view invariants. Experiments on simulated and real image data were conducted, including a comparative analysis with epipolar intersection and the linear combination methods, with results indicating a greater degree of robustness in practice and a higher level of performance in re-projection tasks.
Resumo:
We discuss a strategy for visual recognition by forming groups of salient image features, and then using these groups to index into a data base to find all of the matching groups of model features. We discuss the most space efficient possible method of representing 3-D models for indexing from 2-D data, and show how to account for sensing error when indexing. We also present a convex grouping method that is robust and efficient, both theoretically and in practice. Finally, we combine these modules into a complete recognition system, and test its performance on many real images.
Resumo:
This report studies when and why two Hidden Markov Models (HMMs) may represent the same stochastic process. HMMs are characterized in terms of equivalence classes whose elements represent identical stochastic processes. This characterization yields polynomial time algorithms to detect equivalent HMMs. We also find fast algorithms to reduce HMMs to essentially unique and minimal canonical representations. The reduction to a canonical form leads to the definition of 'Generalized Markov Models' which are essentially HMMs without the positivity constraint on their parameters. We discuss how this generalization can yield more parsimonious representations of stochastic processes at the cost of the probabilistic interpretation of the model parameters.
Resumo:
Techniques, suitable for parallel implementation, for robust 2D model-based object recognition in the presence of sensor error are studied. Models and scene data are represented as local geometric features and robust hypothesis of feature matchings and transformations is considered. Bounds on the error in the image feature geometry are assumed constraining possible matchings and transformations. Transformation sampling is introduced as a simple, robust, polynomial-time, and highly parallel method of searching the space of transformations to hypothesize feature matchings. Key to the approach is that error in image feature measurement is explicitly accounted for. A Connection Machine implementation and experiments on real images are presented.
Resumo:
The Support Vector (SV) machine is a novel type of learning machine, based on statistical learning theory, which contains polynomial classifiers, neural networks, and radial basis function (RBF) networks as special cases. In the RBF case, the SV algorithm automatically determines centers, weights and threshold such as to minimize an upper bound on the expected test error. The present study is devoted to an experimental comparison of these machines with a classical approach, where the centers are determined by $k$--means clustering and the weights are found using error backpropagation. We consider three machines, namely a classical RBF machine, an SV machine with Gaussian kernel, and a hybrid system with the centers determined by the SV method and the weights trained by error backpropagation. Our results show that on the US postal service database of handwritten digits, the SV machine achieves the highest test accuracy, followed by the hybrid approach. The SV approach is thus not only theoretically well--founded, but also superior in a practical application.
Resumo:
We investigate the differences --- conceptually and algorithmically --- between affine and projective frameworks for the tasks of visual recognition and reconstruction from perspective views. It is shown that an affine invariant exists between any view and a fixed view chosen as a reference view. This implies that for tasks for which a reference view can be chosen, such as in alignment schemes for visual recognition, projective invariants are not really necessary. We then use the affine invariant to derive new algebraic connections between perspective views. It is shown that three perspective views of an object are connected by certain algebraic functions of image coordinates alone (no structure or camera geometry needs to be involved).
Resumo:
Impressive claims have been made for the performance of the SNoW algorithm on face detection tasks by Yang et. al. [7]. In particular, by looking at both their results and those of Heisele et. al. [3], one could infer that the SNoW system performed substantially better than an SVM-based system, even when the SVM used a polynomial kernel and the SNoW system used a particularly simplistic 'primitive' linear representation. We evaluated the two approaches in a controlled experiment, looking directly at performance on a simple, fixed-sized test set, isolating out 'infrastructure' issues related to detecting faces at various scales in large images. We found that SNoW performed about as well as linear SVMs, and substantially worse than polynomial SVMs.
Resumo:
The Support Vector Machine (SVM) is a new and very promising classification technique developed by Vapnik and his group at AT&T Bell Labs. This new learning algorithm can be seen as an alternative training technique for Polynomial, Radial Basis Function and Multi-Layer Perceptron classifiers. An interesting property of this approach is that it is an approximate implementation of the Structural Risk Minimization (SRM) induction principle. The derivation of Support Vector Machines, its relationship with SRM, and its geometrical insight, are discussed in this paper. Training a SVM is equivalent to solve a quadratic programming problem with linear and box constraints in a number of variables equal to the number of data points. When the number of data points exceeds few thousands the problem is very challenging, because the quadratic form is completely dense, so the memory needed to store the problem grows with the square of the number of data points. Therefore, training problems arising in some real applications with large data sets are impossible to load into memory, and cannot be solved using standard non-linear constrained optimization algorithms. We present a decomposition algorithm that can be used to train SVM's over large data sets. The main idea behind the decomposition is the iterative solution of sub-problems and the evaluation of, and also establish the stopping criteria for the algorithm. We present previous approaches, as well as results and important details of our implementation of the algorithm using a second-order variant of the Reduced Gradient Method as the solver of the sub-problems. As an application of SVM's, we present preliminary results we obtained applying SVM to the problem of detecting frontal human faces in real images.
Resumo:
We consider the optimization problem of safety stock placement in a supply chain, as formulated in [1]. We prove that this problem is NP-Hard for supply chains modeled as general acyclic networks. Thus, we do not expect to find a polynomial-time algorithm for safety stock placement for a general-network supply chain.