2 resultados para Pollaczek-Khinchin formula

em Massachusetts Institute of Technology


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A closed-form solution formula for the kinematic control of manipulators with redundancy is derived, using the Lagrangian multiplier method. Differential relationship equivalent to the Resolved Motion Method has been also derived. The proposed method is proved to provide with the exact equilibrium state for the Resolved Motion Method. This exactness in the proposed method fixes the repeatability problem in the Resolved Motion Method, and establishes a fixed transformation from workspace to the joint space. Also the method, owing to the exactness, is demonstrated to give more accurate trajectories than the Resolved Motion Method. In addition, a new performance measure for redundancy control has been developed. This measure, if used with kinematic control methods, helps achieve dexterous movements including singularity avoidance. Compared to other measures such as the manipulability measure and the condition number, this measure tends to give superior performances in terms of preserving the repeatability property and providing with smoother joint velocity trajectories. Using the fixed transformation property, Taylor's Bounded Deviation Paths Algorithm has been extended to the redundant manipulators.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose a nonparametric method for estimating derivative financial asset pricing formulae using learning networks. To demonstrate feasibility, we first simulate Black-Scholes option prices and show that learning networks can recover the Black-Scholes formula from a two-year training set of daily options prices, and that the resulting network formula can be used successfully to both price and delta-hedge options out-of-sample. For comparison, we estimate models using four popular methods: ordinary least squares, radial basis functions, multilayer perceptrons, and projection pursuit. To illustrate practical relevance, we also apply our approach to S&P 500 futures options data from 1987 to 1991.