2 resultados para Planning Process
em Massachusetts Institute of Technology
Resumo:
This thesis investigates what knowledge is necessary to solve mechanics problems. A program NEWTON is described which understands and solves problems in mechanics mini-world of objects moving on surfaces. Facts and equations such as those given in mechanics text need to be represented. However, this is far from sufficient to solve problems. Human problem solvers rely on "common sense" and "qualitative" knowledge which the physics text tacitly assumes to be present. A mechanics problem solver must embody such knowledge. Quantitative knowledge given by equations and more qualitative common sense knowledge are the major research points exposited in this thesis. The major issue in solving problems is planning. Planning involves tentatively outlining a possible path to the solution without actually solving the problem. Such a plan needs to be constructed and debugged in the process of solving the problem. Envisionment, or qualitative simulation of the event, plays a central role in this planning process.
Resumo:
Research on autonomous intelligent systems has focused on how robots can robustly carry out missions in uncertain and harsh environments with very little or no human intervention. Robotic execution languages such as RAPs, ESL, and TDL improve robustness by managing functionally redundant procedures for achieving goals. The model-based programming approach extends this by guaranteeing correctness of execution through pre-planning of non-deterministic timed threads of activities. Executing model-based programs effectively on distributed autonomous platforms requires distributing this pre-planning process. This thesis presents a distributed planner for modelbased programs whose planning and execution is distributed among agents with widely varying levels of processor power and memory resources. We make two key contributions. First, we reformulate a model-based program, which describes cooperative activities, into a hierarchical dynamic simple temporal network. This enables efficient distributed coordination of robots and supports deployment on heterogeneous robots. Second, we introduce a distributed temporal planner, called DTP, which solves hierarchical dynamic simple temporal networks with the assistance of the distributed Bellman-Ford shortest path algorithm. The implementation of DTP has been demonstrated successfully on a wide range of randomly generated examples and on a pursuer-evader challenge problem in simulation.