5 resultados para Planets and satellites: gaseous planets
em Massachusetts Institute of Technology
Resumo:
We describe the key role played by partial evaluation in the Supercomputer Toolkit, a parallel computing system for scientific applications that effectively exploits the vast amount of parallelism exposed by partial evaluation. The Supercomputer Toolkit parallel processor and its associated partial evaluation-based compiler have been used extensively by scientists at M.I.T., and have made possible recent results in astrophysics showing that the motion of the planets in our solar system is chaotically unstable.
Resumo:
In this thesis, two different sets of experiments are described. The first is an exploration of the microscopic superfluidity of dilute gaseous Bose- Einstein condensates. The second set of experiments were performed using transported condensates in a new BEC apparatus. Superfluidity was probed by moving impurities through a trapped condensate. The impurities were created using an optical Raman transition, which transferred a small fraction of the atoms into an untrapped hyperfine state. A dramatic reduction in the collisions between the moving impurities and the condensate was observed when the velocity of the impurities was close to the speed of sound of the condensate. This reduction was attributed to the superfluid properties of a BEC. In addition, we observed an increase in the collisional density as the number of impurity atoms increased. This enhancement is an indication of bosonic stimulation by the occupied final states. This stimulation was observed both at small and large velocities relative to the speed of sound. A theoretical calculation of the effect of finite temperature indicated that collision rate should be enhanced at small velocities due to thermal excitations. However, in the current experiments we were insensitive to this effect. Finally, the factor of two between the collisional rate between indistinguishable and distinguishable atoms was confirmed. A new BEC apparatus that can transport condensates using optical tweezers was constructed. Condensates containing 10-15 million sodium atoms were produced in 20 s using conventional BEC production techniques. These condensates were then transferred into an optical trap that was translated from the âproduction chamber’ into a separate vacuum chamber: the âscience chamber’. Typically, we transferred 2-3 million condensed atoms in less than 2 s. This transport technique avoids optical and mechanical constrainsts of conventional condensate experiments and allows for the possibility of novel experiments. In the first experiments using transported BEC, we loaded condensed atoms from the optical tweezers into both macroscopic and miniaturized magnetic traps. Using microfabricated wires on a silicon chip, we observed excitation-less propagation of a BEC in a magnetic waveguide. The condensates fragmented when brought very close to the wire surface indicating that imperfections in the fabrication process might limit future experiments. Finally, we generated a continuous BEC source by periodically replenishing a condensate held in an optical reservoir trap using fresh condensates delivered using optical tweezers. More than a million condensed atoms were always present in the continuous source, raising the possibility of realizing a truly continuous atom lase.
Resumo:
We describe the key role played by partial evaluation in the Supercomputing Toolkit, a parallel computing system for scientific applications that effectively exploits the vast amount of parallelism exposed by partial evaluation. The Supercomputing Toolkit parallel processor and its associated partial evaluation-based compiler have been used extensively by scientists at MIT, and have made possible recent results in astrophysics showing that the motion of the planets in our solar system is chaotically unstable.
Resumo:
Most of the recent literature on chaos and nonlinear dynamics is written either for popular science magazine readers or for advanced mathematicians. This paper gives a broad introduction to this interesting and rapidly growing field at a level that is between the two. The graphical and analytical tools used in the literature are explained and demonstrated, the rudiments of the current theory are outlined and that theory is discussed in the context of several examples: an electronic circuit, a chemical reaction and a system of satellites in the solar system.
Resumo:
We describe the key role played by partial evaluation in the Supercomputing Toolkit, a parallel computing system for scientific applications that effectively exploits the vast amount of parallelism exposed by partial evaluation. The Supercomputing Toolkit parallel processor and its associated partial evaluation-based compiler have been used extensively by scientists at MIT, and have made possible recent results in astrophysics showing that the motion of the planets in our solar system is chaotically unstable.