3 resultados para Planar Inverted F Antenna (pifa)
em Massachusetts Institute of Technology
Resumo:
In order to recognize an object in an image, we must determine the best transformation from object model to the image. In this paper, we show that for features from coplanar surfaces which undergo linear transformations in space, there exist projections invariant to the surface motions up to rotations in the image field. To use this property, we propose a new alignment approach to object recognition based on centroid alignment of corresponding feature groups. This method uses only a single pair of 2D model and data. Experimental results show the robustness of the proposed method against perturbations of feature positions.
Resumo:
This thesis details the development of a model of a seven degree of freedom manipulator for position control. Then, it goes on to discuss the design and construction of a the PHD, a robot built to serve two purposes: first, to perform research on joint torque control schemes, and second, to determine the important dynamic characteristics of the Harmonic Drive. The PHD, is a planar, three degree of freedom arm with torque sensors integral to each joint. Preliminary testing has shown that a simple linear spring model of the Harmonic Drive's flexibility is suitable in many situations.
The Inertio-Elastic Planar Entry Flow of Low-Viscosity Elastic Fluids in Micro-fabricated Geometries
Resumo:
The non-Newtonian flow of dilute aqueous polyethylene oxide (PEO) solutions through microfabricated planar abrupt contraction-expansions is investigated. The contraction geometries are fabricated from a high-resolution chrome mask and cross-linked PDMS gels using the tools of soft-lithography. The small length scales and high deformation rates in the contraction throat lead to significant extensional flow effects even with dilute polymer solutions having time constants on the order of milliseconds. The dimensionless extra pressure drop across the contraction increases by more than 200% and is accompanied by significant upstream vortex growth. Streak photography and videomicroscopy using epifluorescent particles shows that the flow ultimately becomes unstable and three-dimensional. The moderate Reynolds numbers (0.03 ⤠Re ⤠44) associated with these high Deborah number (0 ⤠De ⤠600) microfluidic flows results in the exploration of new regions of the Re-De parameter space in which the effects of both elasticity and inertia can be observed. Understanding such interactions will be increasingly important in microfluidic applications involving complex fluids and can best be interpreted in terms of the elasticity number, El = De/Re, which is independent of the flow kinematics and depends only on the fluid rheology and the characteristic size of the device.