1 resultado para Pictorial modernism
em Massachusetts Institute of Technology
Filtro por publicador
- Abertay Research Collections - Abertay University’s repository (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (6)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (4)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (1)
- Aston University Research Archive (2)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (8)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (5)
- Biodiversity Heritage Library, United States (319)
- Blue Tiger Commons - Lincoln University - USA (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (33)
- Brock University, Canada (23)
- Bucknell University Digital Commons - Pensilvania - USA (6)
- CentAUR: Central Archive University of Reading - UK (39)
- Central European University - Research Support Scheme (1)
- Cochin University of Science & Technology (CUSAT), India (2)
- Coffee Science - Universidade Federal de Lavras (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (6)
- Dalarna University College Electronic Archive (8)
- Digital Archives@Colby (4)
- Digital Commons - Michigan Tech (2)
- Digital Commons - Montana Tech (1)
- Digital Commons @ DU | University of Denver Research (2)
- Digital Commons at Florida International University (3)
- Digital Peer Publishing (3)
- DigitalCommons@The Texas Medical Center (1)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (6)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (1)
- Galway Mayo Institute of Technology, Ireland (1)
- Institute of Public Health in Ireland, Ireland (2)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico do Porto, Portugal (3)
- Instituto Superior de Psicologia Aplicada - Lisboa (1)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (9)
- Massachusetts Institute of Technology (1)
- Memoria Académica - FaHCE, UNLP - Argentina (21)
- Ministerio de Cultura, Spain (2)
- QSpace: Queen's University - Canada (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (5)
- Repositório da Produção Científica e Intelectual da Unicamp (1)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (4)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (2)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (86)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (20)
- Scielo Saúde Pública - SP (17)
- Universidad del Rosario, Colombia (6)
- Universidad Politécnica de Madrid (1)
- Universidade do Minho (4)
- Universidade Federal do Pará (8)
- Universidade Federal do Rio Grande do Norte (UFRN) (9)
- Universitat de Girona, Spain (4)
- Université de Lausanne, Switzerland (16)
- Université de Montréal, Canada (33)
- University of Michigan (108)
- University of Queensland eSpace - Australia (15)
- WestminsterResearch - UK (2)
Resumo:
This thesis presents a statistical framework for object recognition. The framework is motivated by the pictorial structure models introduced by Fischler and Elschlager nearly 30 years ago. The basic idea is to model an object by a collection of parts arranged in a deformable configuration. The appearance of each part is modeled separately, and the deformable configuration is represented by spring-like connections between pairs of parts. These models allow for qualitative descriptions of visual appearance, and are suitable for generic recognition problems. The problem of detecting an object in an image and the problem of learning an object model using training examples are naturally formulated under a statistical approach. We present efficient algorithms to solve these problems in our framework. We demonstrate our techniques by training models to represent faces and human bodies. The models are then used to locate the corresponding objects in novel images.