2 resultados para Physiology, Comparative.

em Massachusetts Institute of Technology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Binocular rivalry refers to the alternating perceptions experienced when two dissimilar patterns are stereoscopically viewed. To study the neural mechanism that underlies such competitive interactions, single cells were recorded in the visual areas V1, V2, and V4, while monkeys reported the perceived orientation of rivaling sinusoidal grating patterns. A number of neurons in all areas showed alternating periods of excitation and inhibition that correlated with the perceptual dominance and suppression of the cell"s preferred orientation. The remaining population of cells were not influenced by whether or not the optimal stimulus orientation was perceptually suppressed. Response modulation during rivalry was not correlated with cell attributes such as monocularity, binocularity, or disparity tuning. These results suggest that the awareness of a visual pattern during binocular rivalry arises through interactions between neurons at different levels of visual pathways, and that the site of suppression is unlikely to correspond to a particular visual area, as often hypothesized on the basis of psychophysical observations. The cell-types of modulating neurons and their overwhelming preponderance in higher rather than in early visual areas also suggests -- together with earlier psychophysical evidence -- the possibility of a common mechanism underlying rivalry as well as other bistable percepts, such as those experienced with ambiguous figures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Comparative analysis is the problem of predicting how a system will react to perturbations in its parameters, and why. For example, comparative analysis could be asked to explain why the period of an oscillating spring/block system would increase if the mass of the block were larger. This thesis formalizes the task of comparative analysis and presents two solution techniques: differential qualitative (DQ) analysis and exaggeration. Both techniques solve many comparative analysis problems, providing explanations suitable for use by design systems, automated diagnosis, intelligent tutoring systems, and explanation based generalization. This thesis explains the theoretical basis for each technique, describes how they are implemented, and discusses the difference between the two. DQ analysis is sound; it never generates an incorrect answer to a comparative analysis question. Although exaggeration does occasionally produce misleading answers, it solves a larger class of problems than DQ analysis and frequently results in simpler explanations.