1 resultado para Photographic surveying
em Massachusetts Institute of Technology
Filtro por publicador
- Repository Napier (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (2)
- Applied Math and Science Education Repository - Washington - USA (8)
- Archive of European Integration (4)
- Aston University Research Archive (6)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (28)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (6)
- Brock University, Canada (144)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (6)
- CentAUR: Central Archive University of Reading - UK (43)
- Chapman University Digital Commons - CA - USA (11)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (2)
- Claremont University Consortium, United States (51)
- Cochin University of Science & Technology (CUSAT), India (1)
- Coffee Science - Universidade Federal de Lavras (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (26)
- Dalarna University College Electronic Archive (4)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons @ DU | University of Denver Research (1)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (23)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (3)
- Harvard University (3)
- Institute of Public Health in Ireland, Ireland (1)
- Instituto Politécnico do Porto, Portugal (10)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (9)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (3)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Massachusetts Institute of Technology (1)
- National Center for Biotechnology Information - NCBI (1)
- Portal do Conhecimento - Ministerio do Ensino Superior Ciencia e Inovacao, Cape Verde (2)
- Publishing Network for Geoscientific & Environmental Data (17)
- QSpace: Queen's University - Canada (1)
- RDBU - Repositório Digital da Biblioteca da Unisinos (5)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (4)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (15)
- Repositório da Produção Científica e Intelectual da Unicamp (3)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (4)
- Repositório digital da Fundação Getúlio Vargas - FGV (4)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (30)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (20)
- Scielo Saúde Pública - SP (20)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (9)
- Universidade do Minho (13)
- Universidade dos Açores - Portugal (3)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (53)
- Universitat de Girona, Spain (3)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (24)
- Université de Montréal, Canada (17)
- University of Connecticut - USA (1)
- University of Michigan (165)
- University of Queensland eSpace - Australia (27)
- University of Washington (2)
Resumo:
This thesis develops an approach to the construction of multidimensional stochastic models for intelligent systems exploring an underwater environment. It describes methods for building models by a three- dimensional spatial decomposition of stochastic, multisensor feature vectors. New sensor information is incrementally incorporated into the model by stochastic backprojection. Error and ambiguity are explicitly accounted for by blurring a spatial projection of remote sensor data before incorporation. The stochastic models can be used to derive surface maps or other representations of the environment. The methods are demonstrated on data sets from multibeam bathymetric surveying, towed sidescan bathymetry, towed sidescan acoustic imagery, and high-resolution scanning sonar aboard a remotely operated vehicle.