3 resultados para Phase rule and equilibrium.
em Massachusetts Institute of Technology
Resumo:
In this work we have made significant contributions in three different areas of interest: therapeutic protein stabilization, thermodynamics of natural gas clathrate-hydrates, and zeolite catalysis. In all three fields, using our various computational techniques, we have been able to elucidate phenomena that are difficult or impossible to explain experimentally. More specifically, in mixed solvent systems for proteins we developed a statistical-mechanical method to model the thermodynamic effects of additives in molecular-level detail. It was the first method demonstrated to have truly predictive (no adjustable parameters) capability for real protein systems. We also describe a novel mechanism that slows protein association reactions, called the “gap effect.” We developed a comprehensive picture of methioine oxidation by hydrogen peroxide that allows for accurate prediction of protein oxidation and provides a rationale for developing strategies to control oxidation. The method of solvent accessible area (SAA) was shown not to correlate well with oxidation rates. A new property, averaged two-shell water coordination number (2SWCN) was identified and shown to correlate well with oxidation rates. Reference parameters for the van der Waals Platteeuw model of clathrate-hydrates were found for structure I and structure II. These reference parameters are independent of the potential form (unlike the commonly used parameters) and have been validated by calculating phase behavior and structural transitions for mixed hydrate systems. These calculations are validated with experimental data for both structures and for systems that undergo transitions from one structure to another. This is the first method of calculating hydrate thermodynamics to demonstrate predictive capability for phase equilibria, structural changes, and occupancy in pure and mixed hydrate systems. We have computed a new mechanism for the methanol coupling reaction to form ethanol and water in the zeolite chabazite. The mechanism at 400°C proceeds via stable intermediates of water, methane, and protonated formaldehyde.
Resumo:
I present a novel design methodology for the synthesis of automatic controllers, together with a computational environment---the Control Engineer's Workbench---integrating a suite of programs that automatically analyze and design controllers for high-performance, global control of nonlinear systems. This work demonstrates that difficult control synthesis tasks can be automated, using programs that actively exploit and efficiently represent knowledge of nonlinear dynamics and phase space and effectively use the representation to guide and perform the control design. The Control Engineer's Workbench combines powerful numerical and symbolic computations with artificial intelligence reasoning techniques. As a demonstration, the Workbench automatically designed a high-quality maglev controller that outperforms a previous linear design by a factor of 20.
Resumo:
The Massachusetts Institute of Technology (MIT) submits this proposal for the Enterprise Value Phase of the Lean Aerospace Initiative (LAI) in response to the October 9, 2002 Request for Proposal (RFP) F33615-02-2-5501 from the Air Force Research Laboratory (AFRL/MLKT), Wright-Patterson Air Force Base, Ohio. This proposal addresses the conduct of the LAI as set forth in the Enterprise Value Phase Concept of Operations (final draft dated 5 June 2002. The creation of this Enterprise Value Phase Concept of Operations (ConOps) was the result of extensive interaction among all stakeholders in the LAI consortium. The proposed products and research topics have been developed by the MIT LAI team based on this extended interaction with the Lean Aerospace Initiative consortium members during the concept of operations development. This proposal is in consonance with the Enterprise Value Phase vision, and mission as set forth in the concept of operations so as to meet stakeholder needs to achieve the goals and deliverables desired, prioritized to fit available funding.