6 resultados para Pfaffian problem
em Massachusetts Institute of Technology
Resumo:
This report presents a system for generating a stable, feasible, and reachable grasp of a polyhedral object. A set of contact points on the object is found that can result in a stable grasp; a feasible grasp is found in which the robot contacts the object at those contact points; and a path is constructed from the initial configuration of the robot to the stable, feasible final grasp configuration. The algorithm described in the report is designed for the Salisbury hand mounted on a Puma 560 arm, but a similar approach could be used to develop grasping systems for other robots.
Resumo:
The STUDENT problem solving system, programmed in LISP, accepts as input a comfortable but restricted subset of English which can express a wide variety of algebra story problems. STUDENT finds the solution to a large class of these problems. STUDENT can utilize a store of global information not specific to any one problem, and may make assumptions about the interpretation of ambiguities in the wording of the problem being solved. If it uses such information or makes any assumptions, STUDENT communicates this fact to the user. The thesis includes a summary of other English language questions-answering systems. All these systems, and STUDENT, are evaluated according to four standard criteria. The linguistic analysis in STUDENT is a first approximation to the analytic portion of a semantic theory of discourse outlined in the thesis. STUDENT finds the set of kernel sentences which are the base of the input discourse, and transforms this sequence of kernel sentences into a set of simultaneous equations which form the semantic base of the STUDENT system. STUDENT then tries to solve this set of equations for the values of requested unknowns. If it is successful it gives the answers in English. If not, STUDENT asks the user for more information, and indicates the nature of the desired information. The STUDENT system is a first step toward natural language communication with computers. Further work on the semantic theory proposed should result in much more sophisticated systems.
Resumo:
The thesis developed here is that reasoning programs which take care to record the logical justifications for program beliefs can apply several powerful, but simple, domain-independent algorithms to (1) maintain the consistency of program beliefs, (2) realize substantial search efficiencies, and (3) automatically summarize explanations of program beliefs. These algorithms are the recorded justifications to maintain the consistency and well founded basis of the set of beliefs. The set of beliefs can be efficiently updated in an incremental manner when hypotheses are retracted and when new information is discovered. The recorded justifications also enable the pinpointing of exactly whose assumptions which support any particular belief. The ability to pinpoint the underlying assumptions is the basis for an extremely powerful domain-independent backtracking method. This method, called Dependency-Directed Backtracking, offers vastly improved performance over traditional backtracking algorithms.
Resumo:
This paper considers the problem of language change. Linguists must explain not only how languages are learned but also how and why they have evolved along certain trajectories and not others. While the language learning problem has focused on the behavior of individuals and how they acquire a particular grammar from a class of grammars ${cal G}$, here we consider a population of such learners and investigate the emergent, global population characteristics of linguistic communities over several generations. We argue that language change follows logically from specific assumptions about grammatical theories and learning paradigms. In particular, we are able to transform parameterized theories and memoryless acquisition algorithms into grammatical dynamical systems, whose evolution depicts a population's evolving linguistic composition. We investigate the linguistic and computational consequences of this model, showing that the formalization allows one to ask questions about diachronic that one otherwise could not ask, such as the effect of varying initial conditions on the resulting diachronic trajectories. From a more programmatic perspective, we give an example of how the dynamical system model for language change can serve as a way to distinguish among alternative grammatical theories, introducing a formal diachronic adequacy criterion for linguistic theories.
Resumo:
This report outlines the problem of intelligent failure recovery in a problem-solver for electrical design. We want our problem solver to learn as much as it can from its mistakes. Thus we cast the engineering design process on terms of Problem Solving by Debugging Almost-Right Plans, a paradigm for automatic problem solving based on the belief that creation and removal of "bugs" is an unavoidable part of the process of solving a complex problem. The process of localization and removal of bugs called for by the PSBDARP theory requires an approach to engineering analysis in which every result has a justification which describes the exact set of assumptions it depends upon. We have developed a program based on Analysis by Propagation of Constraints which can explain the basis of its deductions. In addition to being useful to a PSBDARP designer, these justifications are used in Dependency-Directed Backtracking to limit the combinatorial search in the analysis routines. Although the research we will describe is explicitly about electrical circuits, we believe that similar principles and methods are employed by other kinds of engineers, including computer programmers.