1 resultado para Pedal biopsy
em Massachusetts Institute of Technology
Filtro por publicador
- Repository Napier (1)
- Aberdeen University (2)
- Aberystwyth University Repository - Reino Unido (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (5)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (9)
- Aquatic Commons (3)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (6)
- Aston University Research Archive (2)
- B-Digital - Universidade Fernando Pessoa - Portugal (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (65)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (12)
- Biblioteca Digital de Artesanías de Colombia (1)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (11)
- Bioline International (3)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (39)
- Brock University, Canada (5)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (4)
- CentAUR: Central Archive University of Reading - UK (12)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (2)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Dalarna University College Electronic Archive (2)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (5)
- Digital Commons at Florida International University (1)
- DigitalCommons@The Texas Medical Center (2)
- DigitalCommons@University of Nebraska - Lincoln (4)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (2)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (10)
- Helda - Digital Repository of University of Helsinki (27)
- Hospital Prof. Dr. Fernando Fonseca - Portugal (1)
- Indian Institute of Science - Bangalore - Índia (8)
- Instituto Politécnico do Porto, Portugal (2)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (12)
- Massachusetts Institute of Technology (1)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (3)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (94)
- Queensland University of Technology - ePrints Archive (69)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (4)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (6)
- Repositório Institucional da Universidade Federal de São Paulo - UNIFESP (1)
- Repositório Institucional dos Hospitais da Universidade Coimbra (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (425)
- Repositorio Institucional Universidad EAFIT - Medelin - Colombia (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- Scientific Open-access Literature Archive and Repository (4)
- Universidad del Rosario, Colombia (18)
- Universidad Politécnica de Madrid (1)
- Universidade Federal do Pará (9)
- Universidade Federal do Rio Grande do Norte (UFRN) (5)
- Universitat de Girona, Spain (3)
- Université de Lausanne, Switzerland (11)
- Université de Montréal, Canada (10)
- University of Michigan (4)
- University of Queensland eSpace - Australia (8)
- WestminsterResearch - UK (3)
Resumo:
A novel approach to multiclass tumor classification using Artificial Neural Networks (ANNs) was introduced in a recent paper cite{Khan2001}. The method successfully classified and diagnosed small, round blue cell tumors (SRBCTs) of childhood into four distinct categories, neuroblastoma (NB), rhabdomyosarcoma (RMS), non-Hodgkin lymphoma (NHL) and the Ewing family of tumors (EWS), using cDNA gene expression profiles of samples that included both tumor biopsy material and cell lines. We report that using an approach similar to the one reported by Yeang et al cite{Yeang2001}, i.e. multiclass classification by combining outputs of binary classifiers, we achieved equal accuracy with much fewer features. We report the performances of 3 binary classifiers (k-nearest neighbors (kNN), weighted-voting (WV), and support vector machines (SVM)) with 3 feature selection techniques (Golub's Signal to Noise (SN) ratios cite{Golub99}, Fisher scores (FSc) and Mukherjee's SVM feature selection (SVMFS))cite{Sayan98}.