4 resultados para Parallel numerical algorithms
em Massachusetts Institute of Technology
Resumo:
The Scheme86 and the HP Precision Architectures represent different trends in computer processor design. The former uses wide micro-instructions, parallel hardware, and a low latency memory interface. The latter encourages pipelined implementation and visible interlocks. To compare the merits of these approaches, algorithms frequently encountered in numerical and symbolic computation were hand-coded for each architecture. Timings were done in simulators and the results were evaluated to determine the speed of each design. Based on these measurements, conclusions were drawn as to which aspects of each architecture are suitable for a high- performance computer.
Resumo:
This work demonstrates how partial evaluation can be put to practical use in the domain of high-performance numerical computation. I have developed a technique for performing partial evaluation by using placeholders to propagate intermediate results. For an important class of numerical programs, a compiler based on this technique improves performance by an order of magnitude over conventional compilation techniques. I show that by eliminating inherently sequential data-structure references, partial evaluation exposes the low-level parallelism inherent in a computation. I have implemented several parallel scheduling and analysis programs that study the tradeoffs involved in the design of an architecture that can effectively utilize this parallelism. I present these results using the 9- body gravitational attraction problem as an example.
Resumo:
The Kineticist's Workbench is a program that simulates chemical reaction mechanisms by predicting, generating, and interpreting numerical data. Prior to simulation, it analyzes a given mechanism to predict that mechanism's behavior; it then simulates the mechanism numerically; and afterward, it interprets and summarizes the data it has generated. In performing these tasks, the Workbench uses a variety of techniques: graph- theoretic algorithms (for analyzing mechanisms), traditional numerical simulation methods, and algorithms that examine simulation results and reinterpret them in qualitative terms. The Workbench thus serves as a prototype for a new class of scientific computational tools---tools that provide symbiotic collaborations between qualitative and quantitative methods.
Resumo:
A key capability of data-race detectors is to determine whether one thread executes logically in parallel with another or whether the threads must operate in series. This paper provides two algorithms, one serial and one parallel, to maintain series-parallel (SP) relationships "on the fly" for fork-join multithreaded programs. The serial SP-order algorithm runs in O(1) amortized time per operation. In contrast, the previously best algorithm requires a time per operation that is proportional to Tarjan’s functional inverse of Ackermann’s function. SP-order employs an order-maintenance data structure that allows us to implement a more efficient "English-Hebrew" labeling scheme than was used in earlier race detectors, which immediately yields an improved determinacy-race detector. In particular, any fork-join program running in T₁ time on a single processor can be checked on the fly for determinacy races in O(T₁) time. Corresponding improved bounds can also be obtained for more sophisticated data-race detectors, for example, those that use locks. By combining SP-order with Feng and Leiserson’s serial SP-bags algorithm, we obtain a parallel SP-maintenance algorithm, called SP-hybrid. Suppose that a fork-join program has n threads, T₁ work, and a critical-path length of T[subscript â]. When executed on P processors, we prove that SP-hybrid runs in O((T₁/P + PT[subscript â]) lg n) expected time. To understand this bound, consider that the original program obtains linear speed-up over a 1-processor execution when P = O(T₁/T[subscript â]). In contrast, SP-hybrid obtains linear speed-up when P = O(√T₁/T[subscript â]), but the work is increased by a factor of O(lg n).