3 resultados para Parallel design multicenter

em Massachusetts Institute of Technology


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents the research and development of a 3-legged micro Parallel Kinematic Manipulator (PKM) for positioning in micro-machining and assembly operations. The structural characteristics associated with parallel manipulators are evaluated and the PKMs with translational and rotational movements are identified. Based on these identifications, a hybrid 3-UPU (Universal Joint-Prismatic Joint-Universal Joint) parallel manipulator is designed and fabricated. The principles of the operation and modeling of this micro PKM is largely similar to a normal size Stewart Platform (SP). A modular design methodology is introduced for the construction of this micro PKM. Calibration results of this hybrid 3-UPU PKM are discussed in this paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis presents a new actuator system consisting of a micro-actuator and a macro-actuator coupled in parallel via a compliant transmission. The system is called the Parallel Coupled Micro-Macro Actuator, or PaCMMA. In this system, the micro-actuator is capable of high bandwidth force control due to its low mass and direct-drive connection to the output shaft. The compliant transmission of the macro-actuator reduces the impedance (stiffness) at the output shaft and increases the dynamic range of force. Performance improvement over single actuator systems was expected in force control, impedance control, force distortion and reduction of transient impact forces. A set of quantitative measures is proposed and the actuator system is evaluated against them: Force Control Bandwidth, Position Bandwidth, Dynamic Range, Impact Force, Impedance ("Backdriveability'"), Force Distortion and Force Performance Space. Several theoretical performance limits are derived from the saturation limits of the system. A control law is proposed and control system performance is compared to the theoretical limits. A prototype testbed was built using permanenent magnet motors and an experimental comparison was performed between this actuator concept and two single actuator systems. The following performance was observed: Force bandwidth of 56Hz, Torque Dynamic Range of 800:1, Peak Torque of 1040mNm, Minimum Torque of 1.3mNm. Peak Impact Force was reduced by an order of magnitude. Distortion at small amplitudes was reduced substantially. Backdriven impedance was reduced by 2-3 orders of magnitude. This actuator system shows promise for manipulator design as well as psychophysical tests of human performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

All intelligence relies on search --- for example, the search for an intelligent agent's next action. Search is only likely to succeed in resource-bounded agents if they have already been biased towards finding the right answer. In artificial agents, the primary source of bias is engineering. This dissertation describes an approach, Behavior-Oriented Design (BOD) for engineering complex agents. A complex agent is one that must arbitrate between potentially conflicting goals or behaviors. Behavior-oriented design builds on work in behavior-based and hybrid architectures for agents, and the object oriented approach to software engineering. The primary contributions of this dissertation are: 1.The BOD architecture: a modular architecture with each module providing specialized representations to facilitate learning. This includes one pre-specified module and representation for action selection or behavior arbitration. The specialized representation underlying BOD action selection is Parallel-rooted, Ordered, Slip-stack Hierarchical (POSH) reactive plans. 2.The BOD development process: an iterative process that alternately scales the agent's capabilities then optimizes the agent for simplicity, exploiting tradeoffs between the component representations. This ongoing process for controlling complexity not only provides bias for the behaving agent, but also facilitates its maintenance and extendibility. The secondary contributions of this dissertation include two implementations of POSH action selection, a procedure for identifying useful idioms in agent architectures and using them to distribute knowledge across agent paradigms, several examples of applying BOD idioms to established architectures, an analysis and comparison of the attributes and design trends of a large number of agent architectures, a comparison of biological (particularly mammalian) intelligence to artificial agent architectures, a novel model of primate transitive inference, and many other examples of BOD agents and BOD development.