4 resultados para Paper addresses

em Massachusetts Institute of Technology


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the principles-and-parameters model of language, the principle known as "free indexation'' plays an important part in determining the referential properties of elements such as anaphors and pronominals. This paper addresses two issues. (1) We investigate the combinatorics of free indexation. In particular, we show that free indexation must produce an exponential number of referentially distinct structures. (2) We introduce a compositional free indexation algorithm. We prove that the algorithm is "optimal.'' More precisely, by relating the compositional structure of the formulation to the combinatorial analysis, we show that the algorithm enumerates precisely all possible indexings, without duplicates.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper addresses the problem of nonlinear multivariate root finding. In an earlier paper we described a system called Newton which finds roots of systems of nonlinear equations using refinements of interval methods. The refinements are inspired by AI constraint propagation techniques. Newton is competative with continuation methods on most benchmarks and can handle a variety of cases that are infeasible for continuation methods. This paper presents three "cuts" which we believe capture the essential theoretical ideas behind the success of Newton. This paper describes the cuts in a concise and abstract manner which, we believe, makes the theoretical content of our work more apparent. Any implementation will need to adopt some heuristic control mechanism. Heuristic control of the cuts is only briefly discussed here.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper addresses the problem of synthesizing stable grasps on arbitrary planar polygons. Each finger is a virtual spring whose stiffnes and compression can be programmed. The contacts between the finger tips and the object are point contacts without friction. We prove that all force-closure grasps can be made stable, and it costs 0(n) time to synthesize a set of n virtual springs such that a given force closure grasp is stable. We can also choose the compliance center and the stiffness matrix of the grasp, and so choose the compliant behavior of the grasped object about its equilibrium. The planning and execution of grasps and assembly operations become easier and less sensitive to errors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper addresses the problem of efficiently computing the motor torques required to drive a lower-pair kinematic chain (e.g., a typical manipulator arm in free motion, or a mechanical leg in the swing phase) given the desired trajectory; i.e., the Inverse Dynamics problem. It investigates the high degree of parallelism inherent in the computations, and presents two "mathematically exact" formulations especially suited to high-speed, highly parallel implementations using special-purpose hardware or VLSI devices. In principle, the formulations should permit the calculations to run at a speed bounded only by I/O. The first presented is a parallel version of the recent linear Newton-Euler recursive algorithm. The time cost is also linear in the number of joints, but the real-time coefficients are reduced by almost two orders of magnitude. The second formulation reports a new parallel algorithm which shows that it is possible to improve upon the linear time dependency. The real time required to perform the calculations increases only as the [log2] of the number of joints. Either formulation is susceptible to a systolic pipelined architecture in which complete sets of joint torques emerge at successive intervals of four floating-point operations. Hardware requirements necessary to support the algorithm are considered and found not to be excessive, and a VLSI implementation architecture is suggested. We indicate possible applications to incorporating dynamical considerations into trajectory planning, e.g. it may be possible to build an on-line trajectory optimizer.