6 resultados para PRUEBAS DE PERCEPCIÓN VISUAL

em Massachusetts Institute of Technology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present an approach to perceptual organization and attention based on Curved Inertia Frames (C.I.F.), a novel definition of "curved axis of inertia'' tolerant to noisy and spurious data. The definition is useful because it can find frames that correspond to large, smooth, convex, symmetric and central parts. It is novel because it is global and can detect curved axes. We discuss briefly the relation to human perception, the recognition of non-rigid objects, shape description, and extensions to finding "features", inside/outside relations, and long- smooth ridges in arbitrary surfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In many different spatial discrimination tasks, such as in determining the sign of the offset in a vernier stimulus, the human visual system exhibits hyperacuity-level performance by evaluating spatial relations with the precision of a fraction of a photoreceptor"s diameter. We propose that this impressive performance depends in part on a fast learning process that uses relatively few examples and occurs at an early processing stage in the visual pathway. We show that this hypothesis is plausible by demonstrating that it is possible to synthesize, from a small number of examples of a given task, a simple (HyperBF) network that attains the required performance level. We then verify with psychophysical experiments some of the key predictions of our conjecture. In particular, we show that fast timulus-specific learning indeed takes place in the human visual system and that this learning does not transfer between two slightly different hyperacuity tasks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A typical robot vision scenario might involve a vehicle moving with an unknown 3D motion (translation and rotation) while taking intensity images of an arbitrary environment. This paper describes the theory and implementation issues of tracking any desired point in the environment. This method is performed completely in software without any need to mechanically move the camera relative to the vehicle. This tracking technique is simple an inexpensive. Furthermore, it does not use either optical flow or feature correspondence. Instead, the spatio-temporal gradients of the input intensity images are used directly. The experimental results presented support the idea of tracking in software. The final result is a sequence of tracked images where the desired point is kept stationary in the images independent of the nature of the relative motion. Finally, the quality of these tracked images are examined using spatio-temporal gradient maps.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recovering a volumetric model of a person, car, or other object of interest from a single snapshot would be useful for many computer graphics applications. 3D model estimation in general is hard, and currently requires active sensors, multiple views, or integration over time. For a known object class, however, 3D shape can be successfully inferred from a single snapshot. We present a method for generating a ``virtual visual hull''-- an estimate of the 3D shape of an object from a known class, given a single silhouette observed from an unknown viewpoint. For a given class, a large database of multi-view silhouette examples from calibrated, though possibly varied, camera rigs are collected. To infer a novel single view input silhouette's virtual visual hull, we search for 3D shapes in the database which are most consistent with the observed contour. The input is matched to component single views of the multi-view training examples. A set of viewpoint-aligned virtual views are generated from the visual hulls corresponding to these examples. The 3D shape estimate for the input is then found by interpolating between the contours of these aligned views. When the underlying shape is ambiguous given a single view silhouette, we produce multiple visual hull hypotheses; if a sequence of input images is available, a dynamic programming approach is applied to find the maximum likelihood path through the feasible hypotheses over time. We show results of our algorithm on real and synthetic images of people.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the problem of detecting a large number of different classes of objects in cluttered scenes. Traditional approaches require applying a battery of different classifiers to the image, at multiple locations and scales. This can be slow and can require a lot of training data, since each classifier requires the computation of many different image features. In particular, for independently trained detectors, the (run-time) computational complexity, and the (training-time) sample complexity, scales linearly with the number of classes to be detected. It seems unlikely that such an approach will scale up to allow recognition of hundreds or thousands of objects. We present a multi-class boosting procedure (joint boosting) that reduces the computational and sample complexity, by finding common features that can be shared across the classes (and/or views). The detectors for each class are trained jointly, rather than independently. For a given performance level, the total number of features required, and therefore the computational cost, is observed to scale approximately logarithmically with the number of classes. The features selected jointly are closer to edges and generic features typical of many natural structures instead of finding specific object parts. Those generic features generalize better and reduce considerably the computational cost of an algorithm for multi-class object detection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research project is a study of the role of fixation and visual attention in object recognition. In this project, we build an active vision system which can recognize a target object in a cluttered scene efficiently and reliably. Our system integrates visual cues like color and stereo to perform figure/ground separation, yielding candidate regions on which to focus attention. Within each image region, we use stereo to extract features that lie within a narrow disparity range about the fixation position. These selected features are then used as input to an alignment-style recognition system. We show that visual attention and fixation significantly reduce the complexity and the false identifications in model-based recognition using Alignment methods. We also demonstrate that stereo can be used effectively as a figure/ground separator without the need for accurate camera calibration.