7 resultados para Ordinary differential operators
em Massachusetts Institute of Technology
Resumo:
This paper explores automating the qualitative analysis of physical systems. It describes a program, called PLR, that takes parameterized ordinary differential equations as input and produces a qualitative description of the solutions for all initial values. PLR approximates intractable nonlinear systems with piecewise linear ones, analyzes the approximations, and draws conclusions about the original systems. It chooses approximations that are accurate enough to reproduce the essential properties of their nonlinear prototypes, yet simple enough to be analyzed completely and efficiently. It derives additional properties, such as boundedness or periodicity, by theoretical methods. I demonstrate PLR on several common nonlinear systems and on published examples from mechanical engineering.
Resumo:
This project investigates the computational representation of differentiable manifolds, with the primary goal of solving partial differential equations using multiple coordinate systems on general n- dimensional spaces. In the process, this abstraction is used to perform accurate integrations of ordinary differential equations using multiple coordinate systems. In the case of linear partial differential equations, however, unexpected difficulties arise even with the simplest equations.
Resumo:
A method will be described for finding the shape of a smooth apaque object form a monocular image, given a knowledge of the surface photometry, the position of the lightsource and certain auxiliary information to resolve ambiguities. This method is complementary to the use of stereoscopy which relies on matching up sharp detail and will fail on smooth objects. Until now the image processing of single views has been restricted to objects which can meaningfully be considered two-dimensional or bounded by plane surfaces. It is possible to derive a first-order non-linear partial differential equation in two unknowns relating the intensity at the image points to the shape of the objects. This equation can be solved by means of an equivalent set of five ordinary differential equations. A curve traced out by solving this set of equations for one set of starting values is called a characteristic strip. Starting one of these strips from each point on some initial curve will produce the whole solution surface. The initial curves can usually be constructed around so-called singular points. A number of applications of this metod will be discussed including one to lunar topography and one to the scanning electron microscope. In both of these cases great simplifications occur in the equations. A note on polyhedra follows and a quantitative theory of facial make-up is touched upon. An implementation of some of these ideas on the PDP-6 computer with its attached image-dissector camera at the Artificial intelligence Laboratory will be described, and also a nose-recognition program.
Resumo:
SIN and SOLDIER are heuristic programs in LISP which solve symbolic integration problems. SIN (Symbolic INtegrator) solves indefinite integration problems at the difficulty approaching those in the larger integral tables. SIN contains several more methods than are used in the previous symbolic integration program SAINT, and solves most of the problems attempted by SAINT in less than one second. SOLDIER (SOLution of Ordinary Differential Equations Routine) solves first order, first degree ordinary differential equations at the level of a good college sophomore and at an average of about five seconds per problem attempted. The differences in philosophy and operation between SAINT and SIN are described, and suggestions for extending the work presented are made.
Resumo:
A fundamental question in visual neuroscience is how to represent image structure. The most common representational schemes rely on differential operators that compare adjacent image regions. While well-suited to encoding local relationships, such operators have significant drawbacks. Specifically, each filter's span is confounded with the size of its sub-fields, making it difficult to compare small regions across large distances. We find that such long-distance comparisons are more tolerant to common image transformations than purely local ones, suggesting they may provide a useful vocabulary for image encoding. . We introduce the "Dissociated Dipole," or "Sticks" operator, for encoding non-local image relationships. This operator de-couples filter span from sub-field size, enabling parametric movement between edge and region-based representation modes. We report on the perceptual plausibility of the operator, and the computational advantages of non-local encoding. Our results suggest that non-local encoding may be an effective scheme for representing image structure.
Resumo:
Several algorithms for optical flow are studied theoretically and experimentally. Differential and matching methods are examined; these two methods have differing domains of application- differential methods are best when displacements in the image are small (<2 pixels) while matching methods work well for moderate displacements but do not handle sub-pixel motions. Both types of optical flow algorithm can use either local or global constraints, such as spatial smoothness. Local matching and differential techniques and global differential techniques will be examined. Most algorithms for optical flow utilize weak assumptions on the local variation of the flow and on the variation of image brightness. Strengthening these assumptions improves the flow computation. The computational consequence of this is a need for larger spatial and temporal support. Global differential approaches can be extended to local (patchwise) differential methods and local differential methods using higher derivatives. Using larger support is valid when constraint on the local shape of the flow are satisfied. We show that a simple constraint on the local shape of the optical flow, that there is slow spatial variation in the image plane, is often satisfied. We show how local differential methods imply the constraints for related methods using higher derivatives. Experiments show the behavior of these optical flow methods on velocity fields which so not obey the assumptions. Implementation of these methods highlights the importance of numerical differentiation. Numerical approximation of derivatives require care, in two respects: first, it is important that the temporal and spatial derivatives be matched, because of the significant scale differences in space and time, and, second, the derivative estimates improve with larger support.
Resumo:
How the visual system extracts shape information from a single grey-level image can be approached by examining how the information about shape is contained in the image. This technical report considers the characteristic equations derived by Horn as a dynamical system. Certain image critical points generate dynamical system critical points. The stable and unstable manifolds of these critical points correspond to convex and concave solution surfaces, giving more general existence and uniqueness results. A new kind of highly parallel, robust shape from shading algorithm is suggested on neighborhoods of these critical points. The information at bounding contours in the image is also analyzed.