5 resultados para Optimal transportation

em Massachusetts Institute of Technology


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present an optimal methodology for synchronized scheduling of production assembly with air transportation to achieve accurate delivery with minimized cost in consumer electronics supply chain (CESC). This problem was motivated by a major PC manufacturer in consumer electronics industry, where it is required to schedule the delivery requirements to meet the customer needs in different parts of South East Asia. The overall problem is decomposed into two sub-problems which consist of an air transportation allocation problem and an assembly scheduling problem. The air transportation allocation problem is formulated as a Linear Programming Problem with earliness tardiness penalties for job orders. For the assembly scheduling problem, it is basically required to sequence the job orders on the assembly stations to minimize their waiting times before they are shipped by flights to their destinations. Hence the second sub-problem is modelled as a scheduling problem with earliness penalties. The earliness penalties are assumed to be independent of the job orders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many problems in early vision are ill posed. Edge detection is a typical example. This paper applies regularization techniques to the problem of edge detection. We derive an optimal filter for edge detection with a size controlled by the regularization parameter $\\ lambda $ and compare it to the Gaussian filter. A formula relating the signal-to-noise ratio to the parameter $\\lambda $ is derived from regularization analysis for the case of small values of $\\lambda$. We also discuss the method of Generalized Cross Validation for obtaining the optimal filter scale. Finally, we use our framework to explain two perceptual phenomena: coarsely quantized images becoming recognizable by either blurring or adding noise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the question "How should one act when the only goal is to learn as much as possible?" Building on the theoretical results of Fedorov [1972] and MacKay [1992], we apply techniques from Optimal Experiment Design (OED) to guide the query/action selection of a neural network learner. We demonstrate that these techniques allow the learner to minimize its generalization error by exploring its domain efficiently and completely. We conclude that, while not a panacea, OED-based query/action has much to offer, especially in domains where its high computational costs can be tolerated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Small failures should only disrupt a small part of a network. One way to do this is by marking the surrounding area as untrustworthy --- circumscribing the failure. This can be done with a distributed algorithm using hierarchical clustering and neighbor relations, and the resulting circumscription is near-optimal for convex failures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We give a one-pass, O~(m^{1-2/k})-space algorithm for estimating the k-th frequency moment of a data stream for any real k>2. Together with known lower bounds, this resolves the main problem left open by Alon, Matias, Szegedy, STOC'96. Our algorithm enables deletions as well as insertions of stream elements.